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1 
00:00:35.130 --> 00:00:40.830 
Julian Shun: Good afternoon.  Today. I'm very happy to have Kathy Yelick as our speaker for the 
fast code seminar. 
 
2 
00:00:41.280 --> 00:00:49.950 
Julian Shun: Kathy is the Robert S. Pepper distinguished professor of UCS and Associate Dean 
for research and the division of computing data science. 
 
3 
00:00:50.250 --> 00:01:02.190 
Julian Shun: at UC Berkeley. And she's also a senior advisor on computing at Lawrence Berkeley 
National Labs. Her research focuses on high performance computing programming systems 
parallel algorithms. 
 
4 
00:01:02.520 --> 00:01:12.270 
Julian Shun: And computational should know mix and she currently leads the Exabiome project, 
which is on exhale solutions for microbiome analysis. 
 
5 
00:01:13.320 --> 00:01:22.920 
Julian Shun: Kathy has received many awards for her outstanding contributions. She's a 
member of the National Academy of Engineering and American Academy of Arts and Sciences 
 
6 
00:01:23.280 --> 00:01:36.420 
Julian Shun: She's also a fellow of the ACM and the American Association for the Advancement 
of sciences and she is also a recipient of the ACM IEEE can Kennedy award as well as the ACM 
W Athena award. 
 
7 
00:01:37.320 --> 00:01:49.200 
Julian Shun: Kathy received her PhD in EECS from MIT, and she's been a professor at UC 
Berkeley since 1991, with a joint research appointment at Berkeley Lab since 1996 
 
8 
00:01:49.800 --> 00:01:58.320 
Julian Shun: And today, Kathy is going to talk about some of her recent research on genomic 
analysis and learning at scale. So I'll turn it over to Kathy. 
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9 
00:01:59.520 --> 00:02:07.800 
Kathy Yelick: Great. Well, thanks very much for having me. And it's great to see a bunch of 
familiar faces from way back. And more recently, so 
 
10 
00:02:08.220 --> 00:02:11.520 
Kathy Yelick: I'm going to talk a little mostly about the Exabiome project and 
 
11 
00:02:12.240 --> 00:02:21.450 
Kathy Yelick: I decided because this well by the name of the seminar at least I thought you 
might want to hear more about the algorithm. So I'm going to try to talk a little bit more about 
how some of these problems get 
 
12 
00:02:22.110 --> 00:02:30.660 
Kathy Yelick: Get paralyzed and what makes them I think interesting from a parallel algorithms 
standpoint, in addition to a microbiology standpoint, so 
 
13 
00:02:32.550 --> 00:02:39.210 
Kathy Yelick: My slide. Okay, so I'm going to basically this is the outline of my talk, I'm going to 
talk a little bit about some of the science that we're 
 
14 
00:02:39.690 --> 00:02:47.940 
Kathy Yelick: Enabling with some of these high performance algorithms, a little bit about the 
machines. I think you're mostly familiar with the direction machines are going, but it will help 
 
15 
00:02:48.420 --> 00:03:02.430 
Kathy Yelick: Motivate some of the challenges that come up in the algorithms. So, broadly 
speaking microbiome analysis is important for a lot of applications. I think for many people, 
especially computer scientists who are 
 
16 
00:03:03.210 --> 00:03:13.650 
Kathy Yelick: When you hear the word biology or genomics, you immediately think of the 
human genome, and of course the microbiome is very important in understanding human 
health that gut microbiome skin microbiome and all these others. 
 
17 
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00:03:14.370 --> 00:03:24.630 
Kathy Yelick: But, but that it also comes up a lot, and applications of interest to the Department 
of Energy, such as an environmental science in bio energy applications. So how do you break 
down. 
 
18 
00:03:25.080 --> 00:03:38.100 
Kathy Yelick: switchgrass for biofuels for bio manufacturing. So trying to also use microbes to 
produce, whether it's drugs or other kinds of materials or chemicals that you're interested, as 
well as understanding some of the fundamental 
 
19 
00:03:38.580 --> 00:03:42.240 
Kathy Yelick: Parts of the tree of life that we don't understand very well so 
 
20 
00:03:43.560 --> 00:03:55.410 
Kathy Yelick: Micro microbial data is growing dramatically. This is just a graph of the number of 
meta genomes and meta genome, by the way, is a sample taken from a microbiome. 
 
21 
00:03:56.370 --> 00:04:00.750 
Kathy Yelick: In the, in the wild, so to speak. So whether it's from a human gut or from 
 
22 
00:04:01.050 --> 00:04:11.970 
Kathy Yelick: Say a sample of soil, it might have hundreds or even thousands of different species 
inside of it. So it's not a single genome, but a whole collection of genomes and that sample and 
that sample is then called a meta genome. 
 
23 
00:04:13.080 --> 00:04:21.630 
Kathy Yelick: That there's a new project led by Lawrence Berkeley National Lab. The National 
microbiome data collaboratory which is trying to collect a lot of this microbial data. 
 
24 
00:04:22.200 --> 00:04:35.310 
Kathy Yelick: Together and and then use it to help understand things like function, but just to 
annotate and then share more broadly. A lot of the microbiome data with different levels of 
processing on the data. 
 
25 
00:04:36.600 --> 00:04:46.110 
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Kathy Yelick: So just to give you a sense I talked. I mentioned already, you've got things like 
human or animal gut microbiome. So here's our cow Roman which is 
 
26 
00:04:47.190 --> 00:04:52.080 
Kathy Yelick: Being used to understand how you can break down grasses for things like biofuels. 
 
27 
00:04:52.500 --> 00:05:05.670 
Kathy Yelick: That's one of the sort of medium in terms of complexity and acid mine would have 
what is simpler. And so it was very complicated. This graph is just showing the number of 
species per, per meta genome. So the 
 
28 
00:05:06.780 --> 00:05:15.210 
Kathy Yelick: So as an acid mind might only have a few different microbes that live in that 
particular environment. Whereas when you get to soil, you can have 
 
29 
00:05:15.750 --> 00:05:20.160 
Kathy Yelick: Thousands of species that are in them would make it, making it much harder to 
analyze the data. 
 
30 
00:05:21.060 --> 00:05:25.680 
Kathy Yelick: So the Exabiome project is one of the access scale projects funded by the 
Department of Energy. 
 
31 
00:05:25.950 --> 00:05:38.190 
Kathy Yelick: It is the full title is excess scale solutions for microbiome analysis. And the idea is 
to take access scale algorithms and system to solve problems that were previously intractable. 
And there are really three 
 
32 
00:05:38.610 --> 00:05:45.150 
Kathy Yelick: Pillars of this project. The first one and the one I'm going to talk about the most 
today is meta genome assembly. 
 
33 
00:05:45.630 --> 00:05:57.570 
Kathy Yelick: So that's the problem of taking raw sequence data and I'll say more about this in a 
minute and turning it into genomes, or at least larger fractions of genome so that you can do 
things like find the genes that are in those genomes. 
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34 
00:05:58.710 --> 00:06:04.050 
Kathy Yelick: It uses lots of different data structures hash tables, graphs alignment algorithms 
and as 
 
35 
00:06:04.770 --> 00:06:14.160 
Kathy Yelick: That I will talk in more detail about I'll mention briefly and i think i can village has 
been has spoken at this seminar, not too long ago, and I assume he talked more about 
 
36 
00:06:14.820 --> 00:06:20.940 
Kathy Yelick: Protein clustering and hip MC I'll, I'll mention it a little bit more at the end just 
because of some of the similarity in some of the 
 
37 
00:06:21.480 --> 00:06:30.840 
Kathy Yelick: computational problems that come up. And the last one which I won't say too 
much about is comparative analysis. And this is a part of the project will be led by Los Alamos 
National Labs. 
 
38 
00:06:31.290 --> 00:06:41.280 
Kathy Yelick: But this is where you're given say too many genomes and you're trying to figure 
out what is similar or different across them. You can use that for things like trying to 
understand after a 
 
39 
00:06:42.090 --> 00:06:53.520 
Kathy Yelick: After a fire whether there's a different microbes in the soil than before a fire has 
come through, or many other sort of environmental and monitoring sorts of applications. 
 
40 
00:06:54.360 --> 00:07:04.800 
Kathy Yelick: So this is our timeline. I won't go through this in detail, except as an excess scale 
projects. We have to have a pretty clear set of goals as as not just sort of an open ended 
research project and so 
 
41 
00:07:05.250 --> 00:07:12.810 
Kathy Yelick: We have goals with respect to both assembly and clustering, as well as 
comparative analysis. 
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42 
00:07:13.530 --> 00:07:24.630 
Kathy Yelick: Which is, and this is giving us a little bit of quantitative idea of the size of things 
that we were able to assemble and cluster at the beginning. So about a quarter of a terabyte 
was the largest assembly. 
 
43 
00:07:25.170 --> 00:07:33.060 
Kathy Yelick: That's because the the assemblers the production assemblers that people have 
been using. We're all running on shared memory machine. So if you assume that you can get 
about 
 
44 
00:07:33.510 --> 00:07:44.160 
Kathy Yelick: Maybe one to two terabyte shared memory machine, the size of a data sets that 
you can assemble on that because it does blow up in the middle of the computation is about a 
quarter of a terabyte 
 
45 
00:07:44.880 --> 00:07:58.770 
Kathy Yelick: The clustering problems, they were able to add the giant Genome Institute, which 
is at Lawrence Berkeley National Lab, they're able to cluster about 15 million proteins. It took 
them about 15 weeks of computing time to do that. They, they are 
 
46 
00:07:59.880 --> 00:08:08.700 
Kathy Yelick: The computational biology and community in general is amazingly patient with 
waiting for these things to complete and will dedicate enormous amounts of 
 
47 
00:08:09.090 --> 00:08:17.490 
Kathy Yelick: single node computing time but often had not considered high performance, 
distributed memory that is sorts of computing. And many of these algorithms. 
 
48 
00:08:18.270 --> 00:08:23.520 
Kathy Yelick: In some cases, they're they're sort of natively parallel and those also do use many 
different kinds of clusters, but 
 
49 
00:08:23.970 --> 00:08:28.050 
Kathy Yelick: In particular, and clocked in this protein clustering animated genome assembly. 
Neither of them were 
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50 
00:08:28.320 --> 00:08:41.640 
Kathy Yelick: Were running and distributed memory before our goal is to be able to assemble a 
50 terabyte meta genome and to cluster 50 billion proteins. And we've gotten a certain way is 
along the way so far. So what do I mean by assembly. 
 
51 
00:08:42.780 --> 00:08:56.550 
Kathy Yelick: So we've got our sequence or spits out fragments of a genome, even if you're 
doing single genome assembly, like a human genome. It spits out these fragments and it inserts 
errors into it. So we've got little inserts in here, we've got 
 
52 
00:08:57.780 --> 00:09:01.740 
Kathy Yelick: characters that are mismatched we might have deletions and things like that. 
 
53 
00:09:02.040 --> 00:09:13.410 
Kathy Yelick: And then the goal of assembly is to turn this into ideally a complete genome in 
practice, we will we will not be able to get complete genomes out, but we'll get long enough 
fragments that from that we can do things like find 
 
54 
00:09:13.680 --> 00:09:26.760 
Kathy Yelick: Genes. So one of the tricks is to is to read it multiple times. So a typical number for 
something like a human genome, would be to to make have 20 copies 20 sort of reads of the 
genome. 
 
55 
00:09:27.210 --> 00:09:36.600 
Kathy Yelick: With the idea that you'll have multiple copies, then, of any particular instance of 
the genome and then be able to decide to resolve any errors that occurred in any one of the 
reeds. 
 
56 
00:09:38.850 --> 00:09:44.730 
Kathy Yelick: So this is akin to putting together a puzzle where you don't know what the puzzle 
cover looks like. So you 
 
57 
00:09:44.940 --> 00:09:54.900 
Kathy Yelick: Don't have a picture of it that's actually not true in the human genome, you do 
have the cover. You have you have a reference genome that's been previously assembled, you 
can take the pieces you can line them up. 
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58 
00:09:55.320 --> 00:10:01.050 
Kathy Yelick: Find the place in the puzzle, where they belong, and that speeds up considerably 
from an algorithmic standpoint, but 
 
59 
00:10:01.500 --> 00:10:12.780 
Kathy Yelick: Just makes it much simpler from it from a parallelism standpoint as well. But we're 
looking at the de novo assembly problem where you don't have a reference Gino this comes up 
in many plant species as well as 
 
60 
00:10:13.500 --> 00:10:17.100 
Kathy Yelick: Def definitely comes up and all these environmental meta genome samples. 
 
61 
00:10:17.700 --> 00:10:24.180 
Kathy Yelick: So that, but that problem that I mentioned of assembly is taking these this de 
novo problem where you don't have a reference 
 
62 
00:10:24.600 --> 00:10:36.360 
Kathy Yelick: So this is some examples from the plant biology group at jgr led by Dan Rockstar 
who's also on faculty UC Berkeley and some of the larger data sets that they've assembled using 
our parallel assembler 
 
63 
00:10:36.810 --> 00:10:46.140 
Kathy Yelick: Which was based on their assembler of their shared memory assembler called 
miraculous we built originally version called hipper, which it was used to do this kind of 
 
64 
00:10:47.130 --> 00:11:03.480 
Kathy Yelick: Assembly these the numbers in this table, give you some idea of the size of the 
output versus the size of the the estimated size of the genome. And so you can see we're 
getting about half of the the genome covered by the assemble genome. 
 
65 
00:11:05.040 --> 00:11:15.210 
Kathy Yelick: And this has been used by groups to do a number of different things. One of them 
is some work by Sean Gordon, who at the time was at AGI looking at 
 
66 
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00:11:16.110 --> 00:11:21.300 
Kathy Yelick: A PAN genome assembly. So trying to understand for a population of 
 
67 
00:11:21.720 --> 00:11:29.340 
Kathy Yelick: genomes that are closely related. So within a species, but many different strains of 
it, looking at how how these different strands divert 
 
68 
00:11:29.550 --> 00:11:39.330 
Kathy Yelick: The problem is if you if you do what we often do with human genome data which 
is not to do a de novo assembly, but to align it against the reference, which is, as I said, faster 
and easier. 
 
69 
00:11:39.780 --> 00:11:52.050 
Kathy Yelick: The problem is you will often sort of damp it out. The, the variations across the 
strains and so it's actually useful to do a from scratch de novo assembly on each one of the 
different 
 
70 
00:11:53.490 --> 00:12:00.750 
Kathy Yelick: Strains so that you can really get a better idea of what the differences are across 
the different species of the different instances of the species. 
 
71 
00:12:02.340 --> 00:12:05.430 
Kathy Yelick: Now the main focus, though, of our project is actually microbes and 
 
72 
00:12:05.880 --> 00:12:19.020 
Kathy Yelick: They don't occur as a single species in isolation out in the wild. And in fact, many 
of them you can't grow in a laboratory environment or haven't been growing in the laboratory 
environment. So now we've got the problem of this puzzle construction. 
 
73 
00:12:19.440 --> 00:12:31.170 
Kathy Yelick: Where we don't have the cover of it. We also have actually many different so say 
thousands of different puzzles all mixed together in the case of soil where we've got 1000 
different species. So we're trying to reconstruct each one of those puzzles. 
 
74 
00:12:31.770 --> 00:12:37.740 
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Kathy Yelick: And to add to the complexity of this, the species will occur in different abundances 
some 
 
75 
00:12:38.610 --> 00:12:44.610 
Kathy Yelick: Times vary widely different abundances within that sample. So you can more 
easily assembled things that are very 
 
76 
00:12:44.910 --> 00:12:53.730 
Kathy Yelick: Abundant in this but but trying to get to the rare species which can still be very 
important and understanding what the functional behavior of that meta genome is 
 
77 
00:12:54.150 --> 00:12:58.500 
Kathy Yelick: Will be much harder because there just aren't as many copies of those puzzles 
pieces, if you will. 
 
78 
00:12:59.340 --> 00:13:10.020 
Kathy Yelick: And so one of the examples was looking at an environmental genome. This is 
looking at the Twitchell wetlands, which is an area in Northern California that has been that was  
 
79 
00:13:10.890 --> 00:13:18.900 
Kathy Yelick: Was originally a freshwater environment and then had become salt water, and 
then they through environmental remediation have 
 
80 
00:13:19.290 --> 00:13:28.740 
Kathy Yelick: Turned it back into fresh water, but we're then able to compare what do the 
microbes what they look like in the salt water versus freshwater environment and 
 
81 
00:13:29.340 --> 00:13:38.940 
Kathy Yelick: And the question. One of the key questions is how much carbon is sequestered or 
released from those different in those different types of environments. And I think one of the 
things they found was that it was 
 
82 
00:13:40.440 --> 00:13:47.610 
Kathy Yelick: Surprisingly, I get at least to me, the, the salt water environment actually absorbed 
more carbon than the the freshwater one did. 
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83 
00:13:48.720 --> 00:13:55.620 
Kathy Yelick: And this was so this was one of the data sets. So that we've looked at assembly 
from the original science paper, they had done it with another assembler 
 
84 
00:13:56.100 --> 00:14:03.300 
Kathy Yelick: But we've been looking at this in terms of trying to get in terms of getting higher 
quality and then faster parallel assemblies out of it. 
 
85 
00:14:03.900 --> 00:14:08.460 
Kathy Yelick: At this point, our assembler is being used by number of other science groups 
unrelated. 
 
86 
00:14:09.150 --> 00:14:16.440 
Kathy Yelick: came to us and and even to LDL at the giant genomes Institute and this just gives 
you an idea of some of the size of those 
 
87 
00:14:16.650 --> 00:14:26.880 
Kathy Yelick: Data sets, but also the type of science problems that they're being used for. So 
this kind of carbon cycling in soil. The third one, or an understanding the wetlands, for example. 
 
88 
00:14:27.570 --> 00:14:30.870 
Kathy Yelick: Looking at deep decomposition and nitric vacation. 
 
89 
00:14:31.380 --> 00:14:39.360 
Kathy Yelick: After a fire. So, this is this question of what does it look like, what does the 
microbiome look like after a fire has gone through a particular area. 
 
90 
00:14:39.660 --> 00:14:43.590 
Kathy Yelick: And then the last one, looking at biofuels and things like that so 
 
91 
00:14:43.950 --> 00:14:51.090 
Kathy Yelick: And one of the things that we've found and collaborating with the giant Genome 
Institute is some of the scientists had been constrained by the 
 
92 
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00:14:51.420 --> 00:14:55.500 
Kathy Yelick: Fact that they couldn't assemble a larger one. So they had been they had not been 
trying to 
 
93 
00:14:55.770 --> 00:15:08.700 
Kathy Yelick: Collect such large samples because they didn't think they could actually handle the 
computational problem. And now that they realize that there's a larger scale assembler 
available. They have been getting more requests for very large data set sequencing and then 
 
94 
00:15:09.390 --> 00:15:20.250 
Kathy Yelick: Assembly. So one of the questions that we started with. At the beginning was can 
you not just handle larger data sets, but can you get more information that is can you do better 
science by 
 
95 
00:15:20.730 --> 00:15:27.540 
Kathy Yelick: Having a an assembler that runs across distributed memory and therefore can 
handle multi terabyte data sets and 
 
96 
00:15:28.110 --> 00:15:36.750 
Kathy Yelick: We recently published a paper on this is actually not the reference for the latest 
paper I'm looking at the this quality issue of the graph on the right. 
 
97 
00:15:37.020 --> 00:15:49.440 
Kathy Yelick: And what we're doing is comparing what people did before. For something like 
this. This Twitchell wetlands data, which is the data is actually sample multiple times. So I think 
they started with something like these. 
 
98 
00:15:50.790 --> 00:16:03.870 
Kathy Yelick: What was this, I guess 15 different assemblies and or 21 lane sorry 21 different 
assemblies 21 lanes, which are just think of that as sort of something that comes out of the 
sequence or separately. 
 
99 
00:16:04.500 --> 00:16:15.750 
Kathy Yelick: A score of goop on the, on the, the, the slide that you're doing the sequencing on 
and they would assemble each one of those 21 lane separately because that was that was 
something that would fit within the 
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100 
00:16:16.230 --> 00:16:23.520 
Kathy Yelick: The previous assembler, this was meta space. I think was the assembler that they 
typically use in production for these kinds of problems and 
 
101 
00:16:24.000 --> 00:16:29.520 
Kathy Yelick: What this graph on the right, with and without going into detail is showing how 
complete the assembly is 
 
102 
00:16:29.820 --> 00:16:40.020 
Kathy Yelick: And the number of genomes at a particular completeness. And so the blue line is 
showing what happens when you co assemble everything together, which you can only do if 
you have a large scale. 
 
103 
00:16:40.470 --> 00:16:56.760 
Kathy Yelick: distributed memory assembler versus what happens if you do them one at a time 
and then if you do them in various, various combinations of things. And so you can get more 
better quality genomes out of this type of large scale assembly as well. 
 
104 
00:16:58.410 --> 00:17:09.300 
Kathy Yelick: The second topic that I that, as I said, is in the is in the project is looking at protein 
clustering, and this will turn into a problem. 
 
105 
00:17:10.170 --> 00:17:21.810 
Kathy Yelick: You can call it a graph problem. You can call it a sparse matrix problem, but you're 
starting with a similarity score between protein. So oftentimes these proteins will come from 
the genes that you find in the same meta genome. 
 
106 
00:17:22.200 --> 00:17:27.690 
Kathy Yelick: You've got a large database of those you figure out what protein. The protein 
coding genes code for 
 
107 
00:17:28.110 --> 00:17:40.710 
Kathy Yelick: Then put those into a similarity matrix and then try to find clusters in that matrix 
and this part of the project is really led by item bullish and. And as I said, I think he may have 
have talked about it a little bit more 
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108 
00:17:41.160 --> 00:17:47.880 
Kathy Yelick: But this is one of the science results that they got they got out of this working with 
Nico's creepiness at j CI. 
 
109 
00:17:48.690 --> 00:17:58.200 
Kathy Yelick: Is looking at how that what what the different clusters of genomes are. And there 
are other groups that are that are jgr users now Gigi is a user facility. 
 
110 
00:17:58.680 --> 00:18:09.630 
Kathy Yelick: That are also now using this this type of clustering algorithm. So what are they 
using this for they try to find new proteins that might have applications such as finding new 
types of CRISPR genes. 
 
111 
00:18:10.170 --> 00:18:20.430 
Kathy Yelick: Finding antibacterial antiviral something, of course, we'd be very interested in 
right now, looking for gene clusters for for new antibiotics and so on. 
 
112 
00:18:22.020 --> 00:18:33.270 
Kathy Yelick: And then the last part of the project is to compare to meta genomes to each 
other. There are a few different ways that you can do this. One of them is to sort of figure out 
who is in the 
 
113 
00:18:33.810 --> 00:18:40.500 
Kathy Yelick: What what species are in the in the messaging I'm sample, you're looking at in 
that case you need to have 
 
114 
00:18:40.740 --> 00:18:48.870 
Kathy Yelick: That species represented in a database. And as I mentioned before, and some of 
these samples, such as in soil. There's a lot of unknown species. So that has certain limitations. 
 
115 
00:18:49.350 --> 00:18:55.530 
Kathy Yelick: You're also may look at what they do that is looking at things like the proteins that 
are coated for in the in the 
 
116 
00:18:56.610 --> 00:19:04.170 
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Kathy Yelick: In the sequences. And in this case, you, you may, it may be useful to do assembly 
before you try to 
 
117 
00:19:04.590 --> 00:19:13.410 
Kathy Yelick: Do either the first or the second one of those. The last one actually can be done 
on raw data, and I'll say more about camera analysis, you can just care comparison of the 
histograms. 
 
118 
00:19:13.710 --> 00:19:26.100 
Kathy Yelick: Of all of the fixed length strings for some length k and use that histogram than to 
try to characterize that meta genome sample and then go back and look at at the differences. 
This is useful if 
 
119 
00:19:27.000 --> 00:19:39.300 
Kathy Yelick: If you're it tells you less about kind of why they're different or exactly when 
they're different, but allows you to then find the differences which you can then go back and do 
more analysis on the differences and we are building tools for that as well. 
 
120 
00:19:40.860 --> 00:19:41.340 
Kathy Yelick: So, 
 
121 
00:19:42.810 --> 00:19:54.420 
Kathy Yelick: And they use them a number of different techniques such as in hashing and then 
computing something like a joke card distance between the different messaging on this based 
on these kinds of 
 
122 
00:19:55.680 --> 00:19:57.720 
Kathy Yelick: The cameras and things like 
 
123 
00:19:59.160 --> 00:20:15.900 
Kathy Yelick: So a lot of these based on on these different distance metrics. So I'm going to just 
to give you a sense of some of the scientific problems. I'm happy to. I can't really see all your 
faces right now because I'm hiding that but I'm happy to take any questions if there are any at 
the moment. 
 
124 
00:20:21.180 --> 00:20:24.570 
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Julian Shun: Feel free to unmute yourself. If you have any questions. 
 
125 
00:20:27.990 --> 00:20:39.360 
Kathy Yelick: Okay, well I'm not hearing anything I will continue talking. Let me, I will get kind of 
quickly talk about the machines because I think you are all familiar with what these machine 
high performance machines look like today. 
 
126 
00:20:39.660 --> 00:20:48.750 
Kathy Yelick: And then go on to talk about the algorithms. So just a little bit of history back in 
2007 I was involved, to some extent, and 
 
127 
00:20:49.500 --> 00:21:00.150 
Kathy Yelick: One of the some of the workshops and putting together a report for the access 
scale program and the title of this interestingly was modeling and simulation for the access 
scale for the energy and environment. So this was a Department of Energy. 
 
128 
00:21:00.450 --> 00:21:10.050 
Kathy Yelick: Program. So not surprisingly, a tad energy in the title, but it was entirely focused 
on modeling and simulation, which had been really the focus of all of the high performance 
computing work. 
 
129 
00:21:10.380 --> 00:21:23.310 
Kathy Yelick: In the Department of Energy and the entire Oscar program the advanced scientific 
computing program at do he has had been really focused almost exclusively on modeling and 
simulation and modeling and simulation of the largest scales. 
 
130 
00:21:23.640 --> 00:21:39.510 
Kathy Yelick: And this was, this is just a top 500 graph which you're familiar with, but I would 
say that HTC and scientific computing were kind of synonymous with simulation, as opposed to 
being about any other kind of computational problems such as data analysis. 
 
131 
00:21:41.370 --> 00:21:47.850 
Kathy Yelick: All of you are familiar with, you know, the end of Dennard scaling and of course 
now the end of Moore's law so 
 
132 
00:21:48.480 --> 00:22:01.200 
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Kathy Yelick: That we're starting to see tailing off already in terms of Transistor density, but 
clock frequency of course ended in around 2004. So obviously this is leading to a lot of on ship. 
 
133 
00:22:01.830 --> 00:22:04.950 
Kathy Yelick: Parallelism of various kinds, and on node parallelism and 
 
134 
00:22:05.760 --> 00:22:16.170 
Kathy Yelick: But just maybe the most interesting thing. This slide is the little comment that I 
just added, which is although those of us in the community, computer science community are 
very familiar with this and 
 
135 
00:22:16.770 --> 00:22:25.140 
Kathy Yelick: I think that even more broadly, not everybody has internalized the end of Moore's 
law that they are used to the kind of implicitly 
 
136 
00:22:25.800 --> 00:22:31.830 
Kathy Yelick: The exponential growth that we growth that we've gotten in computing. And one 
example of this is the Atlas project, one of the 
 
137 
00:22:32.100 --> 00:22:37.950 
Kathy Yelick: Project science projects that the Large Hadron Collider that realized about a year, 
year and a half ago that they had 
 
138 
00:22:38.340 --> 00:22:46.950 
Kathy Yelick: Underestimated their computing costs by about a billion dollars. And that was 
because they were just running the projections out from history and of course 
 
139 
00:22:47.280 --> 00:22:58.920 
Kathy Yelick: They were not going to get the same amount of computing for per dollar that they 
were expecting. And they had not paralyzed. These codes necessarily for distributed memory 
and certainly not optimized them for things like GPUs. 
 
140 
00:22:59.850 --> 00:23:11.250 
Kathy Yelick: So at the beginning of the access scale project. There were three swim lanes. One 
of them was faster clocks and that one was kind of immediately discarded as something that 
was never really going to be possible. 
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141 
00:23:11.760 --> 00:23:24.120 
Kathy Yelick: So we weren't that naive in the beginning discussions of this. The other one was 
100 times more cores and maybe 10 times more computing cabinets and the and the last one 
here was GPUs. And at this point, the 
 
142 
00:23:25.140 --> 00:23:31.440 
Kathy Yelick: You know that the largest machine at at nurse and I'll show results from the Corey 
supercomputer, which has nice landing processors. 
 
143 
00:23:31.770 --> 00:23:43.080 
Kathy Yelick: And that was really the focus of what we had thought we were targeting in the 
zoo by on projects so many, many cores of 68 and the current system but you know over 100 
cores may be purchased 
 
144 
00:23:44.250 --> 00:23:53.550 
Kathy Yelick: But traditional sorts of shared memory architectures really has not been what you 
know what it looks like will be getting now that the the the new 
 
145 
00:23:54.030 --> 00:24:03.090 
Kathy Yelick: Japanese machine is of course based on that model with ARM processors, but 
we're really looking at accelerators and specifically GPUs for the US access to machines. 
 
146 
00:24:04.320 --> 00:24:12.180 
Kathy Yelick: And this is just so you know, people often complain about the top 500 lists and I 
sometimes complain about the top 500 list. I think the best 
 
147 
00:24:12.840 --> 00:24:19.590 
Kathy Yelick: Is a, it's a better reflection at this point of what deep learning algorithms look like, 
then it is especially compositional neural nets specifically 
 
148 
00:24:20.040 --> 00:24:32.040 
Kathy Yelick: Than it is and most modeling and simulation problems even certainly doesn't 
reflect data analysis problems, but from a historical standpoint is actually quite interesting. So 
you can see over time how the, you know, vector supercomputers. 
 



MIT CSAIL FastCode Seminar: Professor Kathy Yelick – August 3, 2020 19 

149 
00:24:32.610 --> 00:24:44.370 
Kathy Yelick: died out. And then we had shared memory and the supercomputers and massively 
parallel machines and then clusters of various kinds. And then the accelerated machines is 
purple where we see that really picking up 
 
150 
00:24:44.850 --> 00:24:52.230 
Kathy Yelick: And of course, very different problems in terms of how hard it is to paralyze these. 
So the vector supercomputers, we could 
 
151 
00:24:53.100 --> 00:25:02.400 
Kathy Yelick: Basically paralyzed by annotating cereal programs. We had to completely rethink 
the algorithms and the software. When we got to distributed memory. And unfortunately, I 
think. 
 
152 
00:25:02.700 --> 00:25:09.540 
Kathy Yelick: A lot of that is happening, not necessarily between the nodes, but within the node 
again as we look at these accelerator architectures. 
 
153 
00:25:10.830 --> 00:25:23.280 
Kathy Yelick: And this is just a picture of the different types of accelerators that are in the 
systems, you can see that over 100 about 150 of the systems as of 2019 had accelerators. I 
think this year it's even even higher. 
 
154 
00:25:25.260 --> 00:25:30.690 
Kathy Yelick: And so what does this mean to me and I'd actually put together a slide about this, 
about 10 years ago and 
 
155 
00:25:31.380 --> 00:25:38.550 
Kathy Yelick: And one of the main points still holds, which is we see a lot more data need for 
data parallelism within the GPU architecture. 
 
156 
00:25:39.210 --> 00:25:45.690 
Kathy Yelick: Even though they think of it as threads. It's really, I think, very useful to think 
about data parallel algorithms, when you're trying to map on two 
 
157 
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00:25:46.170 --> 00:25:59.550 
Kathy Yelick: GPUs, a lot more memory spaces than I would ever have wanted to have. So a 
GPU memory space of CPU memory space. And oftentimes, not always memory meant a 
hardware managed levels of the memory hierarchy. 
 
158 
00:26:00.990 --> 00:26:12.990 
Kathy Yelick: Perhaps one of my most frustrating parts to me are still in the case on the right, 
which is that the CPUs are in control. So the accelerators. The GPUs tend to only execute things 
when they're launched 
 
159 
00:26:13.410 --> 00:26:28.140 
Kathy Yelick: From the CPU and that the CPUs are the ones responsible for the communication, 
for the most part, and that's something that we're really pushing on within the extra by on 
projects for reasons that you'll hopefully understand when we look at the algorithms. And so 
the 
 
160 
00:26:30.390 --> 00:26:33.930 
Kathy Yelick: But the, this is not sort of fundamental to them. And I think that 
 
161 
00:26:34.170 --> 00:26:45.300 
Kathy Yelick: If you look at something like the summit machine at Oakridge and certainly any 
plans for access scale machines. You've got well over 90% 95 99% event of your computing 
capability and the GPUs. 
 
162 
00:26:45.540 --> 00:26:51.090 
Kathy Yelick: And the idea that you're putting the CPUs in control and treating the GPU as a co 
processor 
 
163 
00:26:51.540 --> 00:27:01.500 
Kathy Yelick: Is actually I think quite an efficient. I think you want to think about running 
everything on the GPU and only rarely those pieces of the code that won't run on the GPU to 
run in the CPU. 
 
164 
00:27:02.310 --> 00:27:11.640 
Kathy Yelick: So this is what we're trying to do, as I said, we didn't really start the extra by on 
Project. The idea that we were going to be focused on GPUs. But now that that is the 
architecture. 
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165 
00:27:11.910 --> 00:27:18.270 
Kathy Yelick: That it seems we will be using where we're trying to and finding surprising ways of 
mapping. Some of the algorithms onto GPUs. 
 
166 
00:27:19.410 --> 00:27:28.710 
Kathy Yelick: So one of the things though we're in this idea of trying to put the accelerators in 
charge that is the GPUs and charging and in particular in charge of communication. 
 
167 
00:27:29.250 --> 00:27:34.380 
Kathy Yelick: This was some work done recently by Taylor Barnes and others at nurse with 
 
168 
00:27:34.980 --> 00:27:50.700 
Kathy Yelick: The people in my group, looking at trying to do direct communication from a GPU 
into the network. So I'm sure many of you are familiar with envy link, which is a an NVIDIA 
systems. It's our communication conduit between the GPUs and 
 
169 
00:27:51.930 --> 00:28:04.290 
Kathy Yelick: On the summit system at Oak Ridge National Labs because Nvidia worked closely 
with IBM IBM put on the power nine architecture and interface for the for the NB link. 
 
170 
00:28:05.520 --> 00:28:12.660 
Kathy Yelick: Our interface communication interface so that the GPU and the CPU really can talk 
much more directly in that protocol, then 
 
171 
00:28:13.230 --> 00:28:20.820 
Kathy Yelick: Then they can and most other CPU, GPU pairs. So this is kind of a best case. But 
even on this system. And I think part of this is software. 
 
172 
00:28:21.120 --> 00:28:29.490 
Kathy Yelick: At this point, not necessarily fundamental to the hardware when we try to initiate 
communication on a GPU rather than initiating and CPU. 
 
173 
00:28:29.850 --> 00:28:41.790 
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Kathy Yelick: You see really significant synchronization overheads. So it almost seems that 
what's really happening is, although you're trying to initiate communication from directly from 
the GPU and here we're doing a one sided our DMA 
 
174 
00:28:42.450 --> 00:28:45.150 
Kathy Yelick: Communication, which should be about the fastest thing you could do. 
 
175 
00:28:45.450 --> 00:28:54.450 
Kathy Yelick: On either side and you see that that really is still basically coordinating with the 
CPU and there's these things about ringing the doorbell and so on, that the CPU. 
 
176 
00:28:54.690 --> 00:29:03.000 
Kathy Yelick: ends up having to do so we're not really able to get competitive performance by 
direct GPU communication. And on the right hand side you can see what happens with 
 
177 
00:29:03.270 --> 00:29:17.610 
Kathy Yelick: With bandwidth or time per bites and, you know, although eventually they get to 
sort of pretty close to the same point. You need a much larger message on the GPU in order to 
be able to get the same kind of bandwidth performance at the system. 
 
178 
00:29:19.050 --> 00:29:30.000 
Kathy Yelick: And now, more broadly, looking at the architectures. I'm sure you are all all know 
that the most expensive thing you do in any of these systems is move data around. So 
communication of various kinds. 
 
179 
00:29:30.330 --> 00:29:36.990 
Kathy Yelick: This is a graph put together by Jim demo, but based on data from the latest 
edition of the Hennessy Patterson architecture book. 
 
180 
00:29:37.470 --> 00:29:47.160 
Kathy Yelick: So this is looking at network latency here is the slowest thing on the graph. The 
network bandwidth in terms of the time per, per, per bite and 
 
181 
00:29:47.730 --> 00:29:53.970 
Kathy Yelick: And the or per word. I think that is actually and then the memory latency and the 
communication latency and of course down here. 
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182 
00:29:54.510 --> 00:30:05.070 
Kathy Yelick: Is the floating point throughput and the this with this gamma term. So the total 
time to then, you know, just a simple formula to say the time to compute everything is the 
 
183 
00:30:05.700 --> 00:30:12.870 
Kathy Yelick: All the floating point operations, times the time for flop. By the way, in the 
genomics applications, many of them don't do any floating point the assembly problem really 
does. 
 
184 
00:30:13.770 --> 00:30:21.480 
Kathy Yelick: Know floating point, but you can pick a different integer or logical operation. But 
the point is still the same. That, of course, 
 
185 
00:30:22.110 --> 00:30:32.310 
Kathy Yelick: Although back in the 80s, the expensive thing was computing floating point. Now 
it's it's definitely at least on a single node system. Now it's definitely the data movement. 
 
186 
00:30:33.990 --> 00:30:41.250 
Kathy Yelick: So the other thing that's changed since that 2007 report is that the science 
community. So it's not just that you know the 
 
187 
00:30:41.580 --> 00:30:50.280 
Kathy Yelick: The rest of the world has gotten involved in machine learning, but that the rest of 
the science community has also gotten very interested in much larger scale data analysis 
problems. 
 
188 
00:30:50.580 --> 00:31:00.360 
Kathy Yelick: Basically all of the instruments, the scientific instruments, whether it's light 
sources genome sequencers if you're out analyzing even simulation data these data sets have 
become 
 
189 
00:31:00.780 --> 00:31:09.510 
Kathy Yelick: Very large and so there's there's kind of basic data analysis problems that you 
want to do on it. And then, of course, people want to also do machine learning, I'll probably say 
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190 
00:31:09.960 --> 00:31:23.670 
Kathy Yelick: Although I we are working on that within the IBM project. I'm going to say a little 
bit less about that today except as I mentioned the the clustering algorithm. But we're using 
things like deep learning algorithms to try to analyze some of this meta genome data as well. 
 
191 
00:31:25.200 --> 00:31:38.040 
Kathy Yelick: So a report that I was involved with them last year was looking at what's called AI 
for science. The word AI here is really interpret is being used much more broadly to include a 
data analysis. 
 
192 
00:31:38.460 --> 00:31:45.930 
Kathy Yelick: Algorithms are various kinds all different types of statistical analysis and machine 
learning, not just not just deep learning and but 
 
193 
00:31:46.560 --> 00:31:57.930 
Kathy Yelick: These are the we. There were three town halls that were run by each of the three 
science computing labs are gone Oakridge and Berkeley and the breakout groups had a 
 
194 
00:31:58.530 --> 00:32:04.710 
Kathy Yelick: Looked at a lot of the different science problems as well as some of the cross 
cutting themes. And so there's a report available if you're interested in seeing that 
 
195 
00:32:05.160 --> 00:32:15.330 
Kathy Yelick: And the asked kak subcommittee which advises do we on this has a report a draft 
that's that was out as of a few weeks ago, I think they're just finalizing that getting comments 
back so 
 
196 
00:32:15.570 --> 00:32:21.090 
Kathy Yelick: I think there is a big shift happening in in the Department of Energy, but more 
broadly in the science community. 
 
197 
00:32:21.630 --> 00:32:27.150 
Kathy Yelick: Away from just using high performance computing for simulation problems and 
using it for data analysis problems. 
 
198 
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00:32:27.450 --> 00:32:38.490 
Kathy Yelick: And machine learning problems and I separate those because some of these 
problems. There's a lot of data analysis problems that are not machine learning inserted before 
you get to the point of machine learning and others that that are 
 
199 
00:32:39.600 --> 00:32:50.280 
Kathy Yelick: Machine learning. OK. So now on to the algorithms. So I put together a paper, a 
few months ago or last year on just came out in January on 
 
200 
00:32:51.120 --> 00:33:04.200 
Kathy Yelick: Some of the computational patterns that come up in genomic analysis. And what 
was interesting to me, and I'll say a little bit more about this is how similar it was to another set 
of kind of computational motifs for big data problems that the National Academies. 
 
201 
00:33:05.190 --> 00:33:12.300 
Kathy Yelick: Committee, put one of their, their committees put together. So these are the 
algorithms that we see a lot in 
 
202 
00:33:13.290 --> 00:33:23.220 
Kathy Yelick: In these genomics problems we see a lot of hashing and hash tables sorting. I 
won't say so much about sorting, but it's kind of an alternative to hashing for many of these 
problems graphs. 
 
203 
00:33:23.580 --> 00:33:31.770 
Kathy Yelick: A string alignment problems of various kinds, what I'll call generalized and body 
are they called they called generalize and body which is sort of an ultra all sort of computation. 
 
204 
00:33:31.980 --> 00:33:43.410 
Kathy Yelick: And then both dance and sparse matrices. And these are some of the applications 
that I've already mentioned, but it comes up and things like annotating genes, trying to figure 
out what their functional behavior is and things like that as well. 
 
205 
00:33:45.210 --> 00:33:45.660 
Kathy Yelick: So, 
 
206 
00:33:46.830 --> 00:33:56.670 
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Kathy Yelick: If you're familiar with the The seven dwarfs of scientific computing. It was a phrase 
that Phil Colella put together or used over a decade ago. 
 
207 
00:33:57.270 --> 00:34:03.990 
Kathy Yelick: And his original list which I actually still go back to I like the original set of things 
which really come from scientific computing 
 
208 
00:34:04.320 --> 00:34:09.930 
Kathy Yelick: I think still reflect a lot of the computational patterns that come up in scientific 
applications. 
 
209 
00:34:10.440 --> 00:34:15.900 
Kathy Yelick: What's interesting, this was the the for that from the National Academies report 
have these seven giants of big data. 
 
210 
00:34:16.680 --> 00:34:25.410 
Kathy Yelick: And some of these kind of particle methods and generalized and body. There's 
some similarities, although there's also some significant differences and I'll say a little bit more 
about that one. 
 
211 
00:34:26.430 --> 00:34:38.550 
Kathy Yelick: Graph theory and sort of graph algorithms. I think that was is a little bit broader 
than what they meant in that particular National Academies report come up a lot in in this 
genomics space and then 
 
212 
00:34:39.900 --> 00:34:49.650 
Kathy Yelick: These integration and optimization algorithms. I find a little bit less useful as sort 
of understanding the parallelism patterns. I think that these these problems like hashing and 
sorting are really important though. 
 
213 
00:34:50.970 --> 00:34:53.070 
Kathy Yelick: So that's what I would replace them with 
 
214 
00:34:54.420 --> 00:35:06.300 
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Kathy Yelick: Now, as many of you know I've worked for most of my career on these class of 
algorithms called partition global address based languages and and I'm not going to go into 
much detail on them, except to say that 
 
215 
00:35:06.840 --> 00:35:09.480 
Kathy Yelick: It really gives you a different view of a distributed memory. 
 
216 
00:35:10.320 --> 00:35:15.990 
Kathy Yelick: System. And I think one that perhaps we still need a better algorithmic model for 
thinking about, which is 
 
217 
00:35:16.260 --> 00:35:26.490 
Kathy Yelick: It's not really both synchronous and it doesn't require a synchronous send receive 
or even an asynchronous and received is the ability to read and write memory anywhere in the 
system. 
 
218 
00:35:26.850 --> 00:35:41.460 
Kathy Yelick: From any one of the processors. So one sided communication remote put and 
remote get and you'll see why this is useful in some of the algorithms that come up an ex IBM. 
So at this point, where my my work is mostly focused actually in this microbial 
 
219 
00:35:42.090 --> 00:35:51.090 
Kathy Yelick: Data Analysis space and originally I got into it because it looked like this. General 
Assembly problem was a good fit for this, these, these 
 
220 
00:35:51.900 --> 00:35:57.060 
Kathy Yelick: Languages UPC at the time. Although now rewritten it up C plus plus, but 
 
221 
00:35:57.690 --> 00:36:05.490 
Kathy Yelick: And the ability to have these global pointers that any processor can point to any 
other processors memory segments. And then I'm doing a remote reader. Right. 
 
222 
00:36:05.730 --> 00:36:16.740 
Kathy Yelick: Is I think a powerful way of looking at certain classes of algorithms, not all of them, 
but things that are very irregular and have sort of a random access characteristics such as 
building a hash table. 
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223 
00:36:17.910 --> 00:36:20.430 
Kathy Yelick: So in the genome assembly. 
 
224 
00:36:21.450 --> 00:36:26.610 
Kathy Yelick: What we do is we take in these Reed's we chop them into fixed length strings 
called cameras. 
 
225 
00:36:27.450 --> 00:36:33.870 
Kathy Yelick: And we then we histogram those cameras. We do some analysis on and we 
actually throw out the ones that only occur. 
 
226 
00:36:34.470 --> 00:36:43.440 
Kathy Yelick: What a single time because those are probably errors we then build a double line 
graph from those and and then walk through that to Brian graph and 
 
227 
00:36:44.010 --> 00:36:48.600 
Kathy Yelick: Could use that to compute the connected components in that graph which are the 
context so 
 
228 
00:36:49.230 --> 00:36:55.140 
Kathy Yelick: The way the cameras aren't analyzed we we keep the, the left character on the 
right character for each one of the 
 
229 
00:36:55.500 --> 00:37:00.930 
Kathy Yelick: Cameras we store that in a hash table and then you can look at that hash table is a 
graph and walk through that graph. 
 
230 
00:37:01.170 --> 00:37:15.330 
Kathy Yelick: To find the context. And during this camera analysis phase, we can also throw out, 
for example, any, any ambiguities so that what we end up with are very highly we're very 
confident of these fragments of the final genome. 
 
231 
00:37:15.840 --> 00:37:21.810 
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Kathy Yelick: But there, they tend to still be pretty fragmented. They're not not very complete 
they're much more complete than the original reads are 
 
232 
00:37:22.830 --> 00:37:27.120 
Kathy Yelick: But then we tried to extend them by aligning the original reads back to them. 
 
233 
00:37:27.540 --> 00:37:35.370 
Kathy Yelick: Because we've been we've been pretty conservative in that that content 
generation step and that requires an imperfect string alignment. 
 
234 
00:37:35.730 --> 00:37:47.970 
Kathy Yelick: And which is quite expensive. And then we use that to try to build something 
called scaffold. And this is done with another graph walk algorithm that I won't really talk more 
about but is another distributed memory case in this 
 
235 
00:37:48.600 --> 00:38:03.060 
Kathy Yelick: graph algorithm in this particular case we can often distribute the graph on in a 
way that most of the, we can do a partitioning on it. For example, and and that that graph walk 
is not as communication intensive is some of the other parts of the code. 
 
236 
00:38:04.860 --> 00:38:18.480 
Kathy Yelick: So originally this code was written in a combination of two languages MPI for 
libraries for the camera analysis, I'd village had written the camera analysis part of it, and he 
tends to write things in bulk synchronous MPI 
 
237 
00:38:18.990 --> 00:38:26.610 
Kathy Yelick: With collectives and and then the, the rest of the code is written by evangelists 
here ganas as part of his PhD thesis and was all written in UBC 
 
238 
00:38:26.910 --> 00:38:40.020 
Kathy Yelick: This was a bit of a problem for us because it was, it takes up a lot of memory to 
hold both the MPI and UPC runtime at the same time. So at this point, it's all been now 
rewritten into up C plus plus, including that content generation piece. 
 
 
239 
00:38:41.250 --> 00:38:51.480 
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Kathy Yelick: And just to give you an idea, this actually does scale across multiple nodes. This is 
the original UPC code, but as scaling to over 1000 nodes so many more cores. 
 
240 
00:38:52.170 --> 00:39:00.630 
Kathy Yelick: And and you can see the different pieces of it that are scaling pretty well 
scaffolding actually was one of the pieces that was not scaling as well. 
 
241 
00:39:00.930 --> 00:39:15.840 
Kathy Yelick: And this had to do with load balance because as I said, we can partition the graph 
pretty well, but there are some pieces of that graph that connected components are actually 
quite large and so that that's where we have to do some more work in the in the scaffolding 
phase. Whoops. 
 
242 
00:39:17.970 --> 00:39:18.210 
Sorry. 
 
243 
00:39:20.790 --> 00:39:33.510 
Kathy Yelick: I'm still there. Right. Okay, so a camera analysis, we take the reason we chop them 
into cameras. They're sliding windows. So at every single character position you compute 
another kaymer we then build a histogram of those and 
 
244 
00:39:34.770 --> 00:39:40.200 
Kathy Yelick: We also use a well anyway so so we take these we're building these these 
 
245 
00:39:41.700 --> 00:39:46.200 
Kathy Yelick: Histogram. These kaymer histograms by hashing. The kaymer and then 
 
246 
00:39:46.860 --> 00:39:56.430 
Kathy Yelick: Computing its value. But this is going to be a distributed memory data structure 
because if you think about it, kind of on the surface, the size of the dataset grows by almost a 
factor of k 
 
247 
00:39:57.090 --> 00:40:02.100 
Kathy Yelick: Given some some things like k because you're taking every string and making kind 
of a key length copy of 
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248 
00:40:02.640 --> 00:40:13.800 
Kathy Yelick: It at every position you know module of the the tail at the end when the but but 
for short gamers. It's basically k times larger. So the data becomes quite large and doesn't fit in 
a single, shared memory node. 
 
249 
00:40:14.310 --> 00:40:27.480 
Kathy Yelick: So we will build this in distributed memory. So this is built in with also with a 
bloom filter which we do to save memory. So the first thing is to build this Bloom filter. I see. 
There's my mouse. 
 
250 
00:40:28.530 --> 00:40:33.900 
Kathy Yelick: So we distribute the bloom filter over processors, we end up having though to 
communicate all of the cameras. 
 
251 
00:40:34.260 --> 00:40:41.550 
Kathy Yelick: And there is an optimization for heavy hitters that's in the code that is useful for 
certain genomes, depending on how much repetitiveness there is 
 
252 
00:40:42.060 --> 00:40:48.420 
Kathy Yelick: In the set of cameras in the genome. But, but, in general, everything all the 
cameras get sent all around the machine. 
 
253 
00:40:48.690 --> 00:40:55.650 
Kathy Yelick: And then we build a bloom filter and use that to instantiate the hash table. So we 
the bloom filter filters out the singleton's 
 
254 
00:40:56.220 --> 00:41:04.560 
Kathy Yelick: That saves us about maybe a factor of two or so and memory doesn't really save 
us and running times you'll see. But then we do it all over again with the distributed hash table. 
 
255 
00:41:05.370 --> 00:41:10.350 
Kathy Yelick: And this is just some scaling results from the camera analysis and hammer 
 
256 
00:41:10.950 --> 00:41:21.660 
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Kathy Yelick: The hammer camera analysis then when it builds the hash table it's storing two 
characters, the left and the right extension, as I said, the where what appeared in the original 
read before and after that kaymer 
 
257 
00:41:22.050 --> 00:41:32.010 
Kathy Yelick: So a little bit less data is, you know, not very much data is being communicated 
along with the kaymer scales pretty well, though not perfectly as you scale up to 4K nodes are 
so 
 
258 
00:41:33.150 --> 00:41:41.280 
Kathy Yelick: A second assembler that we're building called D Bella also does camera analysis 
and I'll mention a little bit more about it later. But it's a 
 
259 
00:41:42.330 --> 00:41:50.790 
Kathy Yelick: It has a much higher payload that is in addition to the camera. You're also keeping 
track of the ID that they came or appeared in the read ID and also 
 
260 
00:41:51.060 --> 00:41:57.930 
Kathy Yelick: The position within the read. And so the communication volume is higher, and 
therefore the communication cost makes a little bit less scalable. 
 
261 
00:41:58.650 --> 00:42:06.330 
Kathy Yelick: At that point, although the computation that will follow this and the develop cases 
very large. And so, as you'll see, will be able to hide that communication. 
 
262 
00:42:08.820 --> 00:42:09.300 
Kathy Yelick: So, 
 
263 
00:42:10.680 --> 00:42:25.740 
Kathy Yelick: Now that the camera County and from the original code that was in a box 
synchronous MPI model is now in UPC plus plus. And this just shows the running time of the PC 
plus plus code is actually faster than the MPI code. 
 
264 
00:42:26.550 --> 00:42:33.660 
Kathy Yelick: And and the with the the up c++ code, you also seen it without the bloom filter 
where it's actually faster. 
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265 
00:42:34.290 --> 00:42:46.500 
Kathy Yelick: You know, we use the bloom filter. When we need the memory, but it's but it's 
faster to not do the second because it's a complete completely separate round. You do have to 
to do you know the communication twice. 
 
266 
00:42:47.850 --> 00:42:58.230 
Kathy Yelick: We are looking at GPU optimizations for camera counting, you might get a sense 
of why we really care about being able to communicate from the GPU. So this is looking at 
 
267 
00:42:59.010 --> 00:43:03.180 
Kathy Yelick: Some speed ups of just doing camera counting on a single GPUs on a 
 
268 
00:43:03.930 --> 00:43:11.760 
Kathy Yelick: On a Tesla V 100 so we can get some nice speed ups, although even on the single 
GPU. We're actually spending more of our time. 
 
269 
00:43:12.060 --> 00:43:27.540 
Kathy Yelick: Communicating so this, this is the GPU breakdown. How much time that GPUs 
busy and the little blue boxes here so you know point 09 and point 04 out of 1.6 so most of the 
time is actually spent sending the cameras to the GPU so that they can be 
 
270 
00:43:28.320 --> 00:43:34.680 
Kathy Yelick: Counted and so we're actually now sending the RAW, reads and parsing and things 
on the GPU in order to try to 
 
271 
00:43:34.980 --> 00:43:46.500 
Kathy Yelick: amortize that but you can see why we don't want to go back to the CPU in order 
to send every one of these cameras or at least p minus one over p of the cameras typically is 
going to go to another processor. We don't want to send them. 
 
272 
00:43:47.370 --> 00:43:51.780 
Kathy Yelick: Through the CPU by by going back that that through that that channel. 
 
273 
00:43:54.120 --> 00:44:05.070 
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Kathy Yelick: So the next thing that happens in the after kaymer counting and camera analysis is 
the graph walk. This is a paragraph reversal. So once we've got our hash table. 
 
274 
00:44:05.310 --> 00:44:14.370 
Kathy Yelick: And what you can see in here is a little three more. So a key like a TC and the left 
and right extension t and g where the characters that appeared before and after that the 
original reads 
 
275 
00:44:15.120 --> 00:44:21.390 
Kathy Yelick: And then what we do at the algorithm is just picks up a random seed that a 
random one of these cameras. 
 
276 
00:44:21.900 --> 00:44:34.080 
Kathy Yelick: In the hash table and then starts walking through the graph, both to the left and 
then to the right and there is a non trivial synchronization protocol that happens because 
multiple processors can run into the same 
 
277 
00:44:34.530 --> 00:44:40.080 
Kathy Yelick: The same kaymer and therefore have to figure out how to avoid walking through 
the same parts of the graph. 
 
278 
00:44:40.800 --> 00:44:45.720 
Kathy Yelick: And but this is just a little bit, you know, gives you an idea of how that works. Each 
one of these, of course. 
 
279 
00:44:46.020 --> 00:44:58.440 
Kathy Yelick: On average, you're going to be doing a remote lookup for each one of these. So 
you would think this wouldn't scale well at all. But what happens is because all of the as I 
showed you the scale a little scaling results before it scales pretty well because 
 
280 
00:44:59.820 --> 00:45:12.570 
Kathy Yelick: Basically have all the processors doing all of this message injection. So you get 
some slow down, going from one processor to two, but after that you actually get quite quite 
efficient or one node to two, but you get very efficient scaling. 
 
281 
00:45:14.460 --> 00:45:23.490 
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Kathy Yelick: And so you can have multiple processors doing it, as I said, they do have to 
coordinate because they can easily run into the same the same cameras, they they walked 
through the these vertices. So 
 
282 
00:45:24.000 --> 00:45:31.110 
Kathy Yelick: Call this a hash table, call it a graph that's that's how it but that's what the 
algorithm is actually doing is walking through it by looking things up in a hash table. 
 
283 
00:45:32.550 --> 00:45:37.290 
Kathy Yelick: One of the things that evangelist did, and part of his thesis was to look at better 
ways of hashing. 
 
284 
00:45:37.770 --> 00:45:40.860 
Kathy Yelick: So that you can improve locality and reduce the amount of communication. 
 
285 
00:45:41.190 --> 00:45:47.430 
Kathy Yelick: And the answer is, well, I have no idea what my genome looks like until I've 
assembled it so I don't know what these contexts are 
 
286 
00:45:47.640 --> 00:45:55.020 
Kathy Yelick: until I've walked through my hash table. So there's not really a good way of doing 
this, but there's a few use cases that actually come up where you can come up with an oracle 
 
287 
00:45:55.710 --> 00:46:05.730 
Kathy Yelick: For example, if you did have an oracle that told you how to what the hash function 
was that would give you a good locality to put each one of these contexts, these sets of 
 
288 
00:46:06.720 --> 00:46:11.850 
Kathy Yelick: Cameras on a different processor than you could avoid a lot of the communication 
and so 
 
289 
00:46:12.270 --> 00:46:17.580 
Kathy Yelick: Some things that come up in practice is that you're assembling a species that 
you've seen before, such as the human genome or 
 
290 
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00:46:17.760 --> 00:46:26.700 
Kathy Yelick: When I mentioned that pan genome example. So after you've done the first 
assembly. You can use that to to give you a hash function that will do a pretty good job of laying 
out the 
 
291 
00:46:27.420 --> 00:46:35.340 
Kathy Yelick: The reeds, actually, and the end then are the the cameras in the in the hash the 
camera phase based on 
 
292 
00:46:35.850 --> 00:46:48.420 
Kathy Yelick: We and we do both of them. We try to both optimize the layout and also the the 
camera hashing to give you better locality so that even though the first jump might be remote, 
then you'll, you'll be end up being on the same processor for a while. 
 
293 
00:46:49.950 --> 00:47:02.250 
Kathy Yelick: And also the other places comes up in our meta genome example is we're going to 
use an iterative. I didn't really mention that when I talked about meta hit more but you actually 
run through that whole pipeline multiple times using different values of k 
 
294 
00:47:02.580 --> 00:47:16.020 
Kathy Yelick: And so you can use that. And so that gives you some some reasonable partitioning 
of these, and that makes things much happier. In practice, this gives us a factor of almost three 
speed up in terms of the graph reversal time and a 
 
295 
00:47:17.100 --> 00:47:23.940 
Kathy Yelick: New save you over 770 6% of the off node communication. And when you do this 
for a particular input. 
 
296 
00:47:25.560 --> 00:47:31.170 
Kathy Yelick: Now the last sort of algorithm that I think I'll talk about in any detail is alignment 
and 
 
297 
00:47:31.680 --> 00:47:37.710 
Kathy Yelick: Alignment comes up in actually all the, all the different pieces of the Exabiome 
project. So in Whitmer, 
 
298 
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00:47:37.890 --> 00:47:49.440 
Kathy Yelick: After we've computed these contexts. We're going to read a line. The original 
reads to that. And we do that, you know, the difference is that this is now imperfect string 
alignment where we're allowing insertions, deletions and mismatches substitutions. 
 
299 
00:47:50.460 --> 00:48:03.000 
Kathy Yelick: We often do this if we're comparing to a reference. We actually have somebody 
that wants to use our liner for some of the coven data. One of the things that they do with the 
coven say the nasal sample which is a microbial sample. 
 
300 
00:48:04.170 --> 00:48:09.390 
Kathy Yelick: Is they want to filter out all of the human DNA so that they don't leak any di 
 
301 
00:48:10.350 --> 00:48:20.100 
Kathy Yelick: D identify our identity identifiable data about human DNA from the the samples. 
And so there's a fairly expensive filtering process that is alignment against a fixed reference 
 
302 
00:48:20.670 --> 00:48:36.000 
Kathy Yelick: In our second assembler, it actually doesn't do a brain graph assembly. It actually 
just aligns all of the RAW, reads to each other. This comes up and on different sequencing 
technology these long reads and I'll say a little bit more about why that comes up. 
 
303 
00:48:37.140 --> 00:48:49.560 
Kathy Yelick: So without going into detail alignment is a dynamic programming problem. So 
worst case order N squared algorithm defined what is the optimal path through these two 
strings that will get them to align 
 
304 
00:48:50.610 --> 00:48:59.160 
Kathy Yelick: In practice, we often want to align many things too many things, or at least many 
things to one thing. So the as an example I showed before. So what we'll do is we will 
 
305 
00:48:59.340 --> 00:49:10.290 
Kathy Yelick: Only align things that have at least one identical kaymer and that filtering allows 
us to cut down substantially on the order n square that happens before you get to the actual 
string alignment algorithm. 
 
306 
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00:49:10.560 --> 00:49:15.690 
Kathy Yelick: Is called a seat and extend algorithm. And it can be done in a number of different 
ways. We're doing it based on these 
 
307 
00:49:15.930 --> 00:49:23.130 
Kathy Yelick: These cameras. So once again, we're going to use this hash table now for a 
different purpose, which is to find, for example, the context that map. 
 
308 
00:49:23.460 --> 00:49:29.550 
Kathy Yelick: That that are going to match a particular read and we we build that hash table and 
then we look them up. 
 
309 
00:49:29.820 --> 00:49:38.370 
Kathy Yelick: Look up the the cameras that are in all the reads in order to figure out which reads 
to align to which context. And then we run the dynamic programming algorithm on that on 
those pairs. 
 
310 
00:49:38.790 --> 00:49:48.420 
Kathy Yelick: And by the way, there are many variations of these. I know there's a lot of papers 
out there on parallel Smith Waterman GPU optimized with Waterman etc. So with Waterman 
being one of the 
 
311 
00:49:49.170 --> 00:49:57.270 
Kathy Yelick: Canonical the original algorithm for genome will actually need them and lunches, 
the original. But anyway, those to close variations of each other. 
 
312 
00:49:57.960 --> 00:50:05.910 
Kathy Yelick: Many of the algorithms that we want to use in practice will will, for example, 
terminate early if it looks like the score is very poor. It cuts off the upper 
 
313 
00:50:06.600 --> 00:50:15.180 
Kathy Yelick: Upper right and the lower left part of the search space because something that is 
aligning down in those regions is probably not going to be a very good alignment. 
 
314 
00:50:15.360 --> 00:50:29.520 
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Kathy Yelick: And we only care about fairly high quality alignments. And there's a lot of other 
heuristics that come up in practice to speed this up. And so I think there's actually is an 
opportunity for domain specific languages because there's not just one optimized. 
 
315 
00:50:31.020 --> 00:50:40.410 
Kathy Yelick: You know alignment algorithm. But they're all very closely related. We also by the 
way one are aligned proteins as well as DNA so proteins have have a much larger alphabets. 
 
316 
00:50:41.190 --> 00:50:50.460 
Kathy Yelick: As opposed to just the four characters in DNA but the algorithms are essentially at 
some level, the same and similarly for the hash tables we we've got hash tables. 
 
317 
00:50:50.970 --> 00:50:58.140 
Kathy Yelick: Many different hash tables throughout the assemblers and and actually through 
some of the other parts of the application as well. 
 
318 
00:50:58.560 --> 00:51:07.770 
Kathy Yelick: So a little bit of, you know, can you can you optimize GPU alignment on GPUs. Yes, 
you can. And this was some work actually done in a class project. 
 
319 
00:51:08.100 --> 00:51:16.770 
Kathy Yelick: A couple of years ago, but the x axis here is the length of the string that you're 
aligning. And so what you're seeing here is the GPU time in green, and then the 
 
320 
00:51:17.340 --> 00:51:21.570 
Kathy Yelick: The original sequential time and black. And there's an open MP and a shared 
memory SMP node. 
 
321 
00:51:21.930 --> 00:51:30.420 
Kathy Yelick: So what you can see as you get substantial speed ups but when the length is out 
here in the 10 10,000 characters and many of the things that were read we're aligning our 
 
322 
00:51:30.690 --> 00:51:38.490 
Kathy Yelick: The reeds for the short read case. So in some part of the alumina reads about 150 
base pairs. So we're way over here where you're not really getting much speed ups. 
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323 
00:51:38.760 --> 00:51:49.980 
Kathy Yelick: I'm instead, what we're doing is, then, of course, doing multiple alignments 
together as a single group a batch alignment, if you will. And this is some work done by was the 
one looking at 
 
324 
00:51:50.520 --> 00:52:00.060 
Kathy Yelick: The speed up that you get from doing that. But once again, you know, we don't 
want to just do these things on a single GPU, we have to put them into this distributed memory 
framework. 
 
325 
00:52:00.540 --> 00:52:11.790 
Kathy Yelick: We've done that. Just recently, these are brand new results and actually from this 
morning, I think. So this is speeding up the alignments to the alignment phases of the metal 
hammer pipeline. 
 
326 
00:52:12.330 --> 00:52:21.600 
Kathy Yelick: So we're not trying to GPU fit the other parts of it yet although we've got a Kamer 
that I showed you a little bit on camera analysis, but that's not yet in this code. 
 
327 
00:52:22.080 --> 00:52:29.970 
Kathy Yelick: But you can see we we get sort of decent speed ups on the alignment pieces of it. 
But there's still a lot of distributed memory communication happening. 
 
328 
00:52:30.210 --> 00:52:42.060 
Kathy Yelick: And so we would really like to be able to do efficient one sided communication 
from the directly from the GPUs and, you know, my little cartoon here is the fact that this is 
kind of now a game of GPU whack a mole where we're going to try to 
 
329 
00:52:42.450 --> 00:52:54.420 
Kathy Yelick: There was not not one phase that completely dominated the computation here in 
the long read assembler, actually there's a lot more time spent in just pure alignment. So I think 
they're the GPUs will be much more have a much more immediate impact. 
 
330 
00:52:55.470 --> 00:53:06.300 
Kathy Yelick: So on the long Rita liner, just briefly, you know, what's different about long reads 
well there longer so they may be over 10,000 base pairs as opposed to say 150 base pairs. 
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331 
00:53:06.900 --> 00:53:10.200 
Kathy Yelick: So the problems are more compute intensive and they're more GPU friendly. 
 
332 
00:53:10.770 --> 00:53:15.360 
Kathy Yelick: We don't necessarily use a divine graph, although there's still some debate in the 
community about that. 
 
333 
00:53:15.630 --> 00:53:20.250 
Kathy Yelick: And we just do these pairwise alignments. And you can think of it as an 
embarrassingly parallel all to all 
 
334 
00:53:20.460 --> 00:53:31.740 
Kathy Yelick: Alignment problem, this sort of generalize and body, if you will, but you really 
want to do is first at alignments. You want to only use things that have a common kaymer in 
them. And in fact, we also filter the cameras. 
 
335 
00:53:32.160 --> 00:53:36.420 
Kathy Yelick: Because some of them occur with such high frequency. And that's what the graph 
on the right is showing 
 
336 
00:53:36.840 --> 00:53:51.420 
Kathy Yelick: That they're probably going to give you a lead to a bunch of spurious overlaps and 
therefore a lot of cost in terms of the alignments. And so we we filter them out as well. This 
turns into a sparse matrix problem that is the kaymer by read sparse matrix which we multiply 
times the 
 
337 
00:53:52.710 --> 00:54:00.510 
Kathy Yelick: Sea, they read by camera times the camera by reads it's transpose and get a read 
by read sparse matrix out and that tells you which ones have the 
 
338 
00:54:00.810 --> 00:54:13.110 
Kathy Yelick: Pairs of reads to align. So lots of opportunities here and for for both distributed 
memory optimizations communication avoiding algorithms and and also on GPU optimizations. 
 
339 
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00:54:14.490 --> 00:54:22.860 
Kathy Yelick: So this is just a little bit of a time breakdown, which I won't say talk about in detail, 
but like the other liner. Like the other assembler those. This is for the long read assembler 
 
340 
00:54:23.490 --> 00:54:34.380 
Kathy Yelick: And there are a number of different phases. So we're going to have to put GPU 
optimizations into the camera analysis and and everything else inside of here, we did recently. 
 
341 
00:54:35.130 --> 00:54:38.880 
Kathy Yelick: marquis to Alice. Just finished her PhD thesis, looking at a synchrony. 
 
342 
00:54:39.060 --> 00:54:47.310 
Kathy Yelick: Versus box synchrony in this this long rate assembler in this part of the overlap or. 
And so what you can see from this graph is that she can completely hide. 
 
343 
00:54:47.880 --> 00:54:51.210 
Kathy Yelick: The communication time using the one side communication. 
 
344 
00:54:51.690 --> 00:55:00.330 
Kathy Yelick: She's actually also analyzed the memory footprint and shows that the 
asynchronous algorithm that is using up C plus plus, and one sided communication just sort of 
on demand. 
 
345 
00:55:00.690 --> 00:55:16.050 
Kathy Yelick: Is also use a much lower memory footprint, at least on most most configurations 
until you get to the largest one here. So there's certain advantages. What you can see as left 
here is some synchronization time. So there's some load imbalance that probably still needs to 
be addressed. 
 
346 
00:55:17.250 --> 00:55:22.020 
Kathy Yelick: I think I'll skip this since i said i think i hadn't talked a little bit more hopefully 
about hit more 
 
347 
00:55:22.470 --> 00:55:29.340 
Kathy Yelick: But it also he turns everything into a sparse matrix algorithm, although you can 
think of it as a graph algorithm. And I'll just wrap up by saying that 
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348 
00:55:29.970 --> 00:55:38.700 
Kathy Yelick: In science, I think that simulation problems have not gone away, and there's still a 
number of simulation problems that are too expensive for 
 
349 
00:55:39.840 --> 00:55:44.730 
Kathy Yelick: For single node system certainly and require much larger scale HTC systems. 
 
350 
00:55:45.180 --> 00:55:53.190 
Kathy Yelick: But they're also a lot of data analysis problems now because the data sets have 
grown and certainly they've grown in science in a different in addition to growing in 
 
351 
00:55:53.460 --> 00:55:59.910 
Kathy Yelick: Business and other applications that maybe you're more familiar with. And there 
are a lot of machine learning problems that are both 
 
352 
00:56:00.630 --> 00:56:14.400 
Kathy Yelick: Too large and too expensive. And we're so we're using our HTC systems for that as 
well. And, but I think that we see a somewhat different set of computational patterns that 
come up here, not just the lack of floating point. But really, that 
 
353 
00:56:15.060 --> 00:56:31.110 
Kathy Yelick: We see a lot more of this irregular memory access kind of workload that comes 
from things like hash tables and sparse matrices that are very unstructured rather than the 
kinds of sparse matrices that arise in simulation problems. So with that, I will stop and happy to 
answer any 
 
354 
00:56:31.110 --> 00:56:34.980 
Julian Shun: Questions. Oops. Excellent, excellent. Kathy. 
 
355 
00:56:35.850 --> 00:56:37.380 
Julian Shun: Do a virtual. APPLAUSE 
 
356 
00:56:40.590 --> 00:56:46.740 
Julian Shun: So if anyone has any questions, please feel free to unmute yourself and ask 
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357 
00:56:48.450 --> 00:56:58.980 
Julian Shun: So I'll start off with a question. So I had a question regarding the portability of the 
algorithms. So I'm wondering if you need to. 
 
358 
00:56:59.370 --> 00:57:09.990 
Julian Shun: Tune the algorithms for different types of machines and also for different types of 
data sets, or are you using basically the same code for different machines that data sets. 
 
359 
00:57:10.590 --> 00:57:11.640 
Kathy Yelick: Yeah, so, so I can 
 
360 
00:57:12.360 --> 00:57:23.100 
Kathy Yelick: answer that in a couple different ways. So from the machine standpoint, yes, 
we're going to use different code that I mean I think a DSL would be helpful in here for some of 
the underlying computational kernel is like the alignment and maybe the camera accounting 
 
361 
00:57:23.880 --> 00:57:34.350 
Kathy Yelick: But we, we are not planning to use kind of a higher level language like open MP4 
programming the GPUs on the different access scale architecture. So we've 
 
362 
00:57:34.590 --> 00:57:42.750 
Kathy Yelick: We've got code right now and optimized for NVIDIA and we'll be in working 
starting to work on optimizing that for AMD GPUs, which will be in the Oakridge machine. 
 
363 
00:57:43.230 --> 00:57:50.880 
Kathy Yelick: Haven't really started yet on the, the Intel GPUs, but because it's a fairly small set 
of kernels. We've decided just to and there 
 
364 
00:57:51.240 --> 00:58:01.860 
Kathy Yelick: We decided to go ahead and optimize them for those different architectures. And 
I think there are different features of the architectures that are missing on some that will I think 
effect exactly how they get written 
 
365 
00:58:03.030 --> 00:58:11.040 
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Kathy Yelick: The, the communication and kind of the higher level stuff is all portable that's up 
c++ code written on gas now. So the gas net Communication layer has to be 
 
366 
00:58:11.460 --> 00:58:21.720 
Kathy Yelick: Re optimized. I think exactly how if we get device level that is GPU to GPU 
communication that may be somewhat specialized to the architecture. So 
 
367 
00:58:22.800 --> 00:58:23.550 
Kathy Yelick: Anyway, we're 
 
368 
00:58:25.620 --> 00:58:29.970 
Kathy Yelick: You know, so, so it's different from that. But the other thing is that if you look at 
some of the 
 
369 
00:58:30.630 --> 00:58:41.400 
Kathy Yelick: Library sort of naturally occurring libraries that right now are different instances 
we I mean we have refactor the code to use a single hash table implementation, but each one 
of those hash tables can be quite different. 
 
370 
00:58:41.670 --> 00:58:48.720 
Kathy Yelick: And things like you know do Bloom filters work does a heavy hitters algorithm 
work. Those are really dependent on sometimes on the data set as well. 
 
371 
00:58:49.890 --> 00:58:50.550 
Kathy Yelick: That's great question. 
 
372 
00:58:51.330 --> 00:58:52.560 
Julian Shun: Great, thanks a lot. 
 
373 
00:58:55.770 --> 00:58:57.210 
Julian Shun: Any, any other questions. 
 
374 
00:58:57.660 --> 00:58:58.020 
Yes. 
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375 
00:58:59.490 --> 00:59:00.300 
Yiqiu Wang: I have a question. 
 
376 
00:59:01.230 --> 00:59:11.700 
Yiqiu Wang: Yeah. Thanks for a great talk. So I'm not familiar with the field. I'm curious, the 
algorithms for instance the genome assembly printing clustering that did you already doing 
with static or evolving datasets. 
 
377 
00:59:13.770 --> 00:59:22.440 
Kathy Yelick: Um, let's see. So I would say that the genome assembly problem is really static. 
We have a data set. There's a fixed data set that you're going to try to assemble so 
 
378 
00:59:22.620 --> 00:59:23.190 
Kathy Yelick: You may 
 
379 
00:59:24.210 --> 00:59:35.400 
Kathy Yelick: There are more and more data sets coming in over time, but you're not trying to 
update the assembly based on those new data sets, you've just got one, the one assembly for 
each each data sets. 
 
380 
00:59:36.540 --> 00:59:42.240 
Kathy Yelick: That the protein clustering. Actually, that's it. That's a great question and protein 
clustering. It does incrementally change because 
 
381 
00:59:42.600 --> 00:59:49.620 
Kathy Yelick: The question right now. What they do is if you've got a new update to the 
database. It's got a bunch of new protein Senate. 
 
382 
00:59:49.830 --> 00:59:57.030 
Kathy Yelick: You actually start from scratch and rerun the algorithms all over again, which is 
which. You know, when it used to take them 15 weeks to do this was a bit of a problem. 
 
383 
00:59:57.660 --> 01:00:03.060 
Kathy Yelick: So there are questions about whether you can come up with an incremental 
algorithm, but 
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384 
01:00:03.900 --> 01:00:13.200 
Kathy Yelick: I would say that. I mean, there's there's statistical reasons why you may have 
thrown out. For example, some of the connections between things when you first ran it that 
you would want to put back in 
 
385 
01:00:13.950 --> 01:00:21.690 
Kathy Yelick: If you add some more data that show because it, you're kind of computing a 
transitive closure. If you're well you're saying, oh, this protein is like this protein. 
 
386 
01:00:21.960 --> 01:00:32.670 
Kathy Yelick: And it's like something else, but the the first and the third may not be that similar 
to each other. So it's a little bit hard to know whether you can get an incremental algorithm 
that will be effective, I think. 
 
387 
01:00:32.730 --> 01:00:33.990 
Yiqiu Wang: That's very interesting. Thank you. 
 
388 
01:00:36.810 --> 01:00:38.940 
Julian Shun: Great. Thanks, David. 
 
389 
01:00:45.660 --> 01:00:49.590 
Julian Shun: David, do you want to unmute yourself if you had a question. 
 
390 
01:00:56.790 --> 01:00:58.440 
David Reed: You. I hear is terrible. Sorry. 
 
391 
01:01:00.420 --> 01:01:06.840 
David Reed: The was I was in the middle of raising my hand and I couldn't get back to back to 
the unmute button. 
 
392 
01:01:09.240 --> 01:01:13.110 
David Reed: Oh, so as I listened to the algorithm part 
 
393 
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01:01:14.610 --> 01:01:18.840 
David Reed: One thing that struck, which is because I'm not in the field. 
 
394 
01:01:19.890 --> 01:01:25.650 
David Reed: You're, you're doing fairly small I you know the graph theory or sparse matrix. 
 
395 
01:01:27.960 --> 01:01:48.150 
David Reed: Operations in particular are very small and and you know there are a lot of them. 
And ultimately, they may involve moving data in your distributed memory thing and it struck 
me that from my signal processing background I'm much more current on 
 
 
396 
01:01:49.200 --> 01:02:00.930 
David Reed: Third two approaches one old and one much newer for doing some of the same 
kinds of things that I'm not sure whether they're 
 
397 
01:02:02.070 --> 01:02:07.800 
David Reed: Hidden in this or whether others. Others are using it. When, when a new approach 
is called compressed sense 
 
398 
01:02:09.600 --> 01:02:21.660 
David Reed: And the basic idea of compressed sensing is that you essentially dynamically 
compress the data using 
 
399 
01:02:22.980 --> 01:02:32.100 
David Reed: Its own patterns. You know, you build up a library of, you know, when one way of 
compressing is a library compression based on frequency and stuff like that. 
 
400 
01:02:33.570 --> 01:02:37.560 
David Reed: And the other older way is transforms 
 
401 
01:02:38.640 --> 01:02:52.740 
David Reed: If you have, you know, a long SIGNAL. YOU MIGHT DO A for a transformer. Now 
this space is not, you know, time sequences, but it is a space that's got structure. 
 
402 
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01:02:53.310 --> 01:03:12.060 
David Reed: To it. And you could imagine an algebra of the cavers that allowed you to derive 
strings from not just from concatenation, but from some kind of difference difference in so you 
could actually decompose it into spectral kinds of 
 
403 
01:03:14.370 --> 01:03:17.670 
David Reed: Parts, which then algorithmically. 
 
404 
01:03:19.110 --> 01:03:23.460 
David Reed: Are much faster because, you know, in the case of 50 it's 
 
405 
01:03:24.960 --> 01:03:26.850 
David Reed: Linear rather than quadratic 
 
406 
01:03:28.350 --> 01:03:42.300 
David Reed: So I'm just wondering are there are there people looking at representational issues 
here or is it all still about peace sort of springs of low level units being compared and matched 
and so forth. 
 
407 
01:03:43.290 --> 01:03:47.250 
Kathy Yelick: Yeah, I mean, it's interesting. I haven't thought about. I think the same 
 
408 
01:03:48.300 --> 01:03:57.180 
Kathy Yelick: Kind of algorithms that you're referring to, but I but but it is the case that 
fundamentally what you're trying to do, given all of this raw sequencing data. 
 
409 
01:03:57.480 --> 01:04:14.070 
Kathy Yelick: Is find a very low dimensional basic linear representation that that is, you know, 
close to the union of all of those reeds, if you will, that all of those reeds map back onto that 
was some small amount of errors. So the same sort of 
 
410 
01:04:15.240 --> 01:04:29.190 
Kathy Yelick: Ideas. I have been wondering a little bit about in this space and also whether we 
should be thinking. I mean, there are these different phases of assembly and there are these 
different heuristics in here, but I wonder if we shouldn't be thinking about it more like a 
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411 
01:04:30.720 --> 01:04:40.260 
Kathy Yelick: You know it, I don't know, an image processing image reconstruction algorithm or 
something or where you're, you know, this phase is trying to find the the short distance 
 
412 
01:04:41.250 --> 01:04:46.920 
Kathy Yelick: You know overlaps and this this other part of it's finding the longer distance ones, 
which I guess would be a little bit like your frequency 
 
413 
01:04:47.160 --> 01:05:00.240 
Kathy Yelick: Domains in an FFT. So I they aren't an eye. I think what I find is that they're very 
discreet algorithms right there really based on graphs and the sort of there's an edge and it's 
either there. It's not there and 
 
414 
01:05:01.020 --> 01:05:10.440 
Kathy Yelick: And they certainly look at different kinds of edges and these graphs. But I do 
wonder if there's a more continuous way of looking at this, that would give us better 
 
415 
01:05:10.860 --> 01:05:20.610 
Kathy Yelick: Better assembly, because as I said, fundamentally, you're just trying to you're 
trying to find a linear sequence of these characters that map that all the genomes are 
represented and so 
 
416 
01:05:23.130 --> 01:05:27.780 
David Reed: Computer science people sort of discovered that discrete 
 
417 
01:05:29.010 --> 01:05:33.510 
David Reed: You know that when you're trying to do you know multiplication of very large 
numbers. 
 
418 
01:05:34.980 --> 01:05:47.790 
David Reed: For a transform on the digits of the number essentially works really well and you 
know it. And it took a computer scientist, not, not the people 
 
419 
01:05:48.510 --> 01:06:03.780 
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David Reed: You know, trying to do multiplication of numbers to figure that out. So I'm 
wondering if there's, you know, there's somewhat of a blindness in the genomics community 
because they're scientists not mathematicians, so be interesting anyway. 
 
420 
01:06:04.050 --> 01:06:18.840 
Kathy Yelick: Yeah, well, I have to say, Dan Rockstar who did the original which are parallel 
algorithm. I know we got into this originally just to make it run faster. If I say I like to make 
things run fast. You know that have clever and hard to realize algorithms and that that one fit 
the bill, but 
 
421 
01:06:19.950 --> 01:06:28.860 
Kathy Yelick: But he is a physicist by background. So I think he's pretty perfectly comfortable in 
a continuous space to but it, but it is true that the the algorithms, I get. And then, and then 
 
422 
01:06:29.310 --> 01:06:43.500 
Kathy Yelick: On top of the discrete algorithms say graph algorithms is a bunch of heuristics that 
make me very, you know, comfortable that they're, they're not exactly why this particular set of 
risks or values are being used is not 
 
423 
01:06:44.520 --> 01:06:45.720 
Kathy Yelick: It's not always clear 
 
424 
01:06:47.370 --> 01:06:50.820 
David Reed: That's fascinating. Thank you for your talk. Thanks. 
 
425 
01:06:51.960 --> 01:06:54.600 
Julian Shun: Great, thanks a lot for the interesting questions. 
 
426 
01:06:54.660 --> 01:07:00.780 
Julian Shun: Yeah. Um, well, since we're past three o'clock. Already, we'll wrap up the talk. 
 
427 
01:07:01.860 --> 01:07:05.370 
Julian Shun: And let's thank Kathy again for the very interesting talk. 
 
428 
01:07:06.480 --> 01:07:11.160 
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Julian Shun: We can do another zoom applause and click on the reactions but 
 
429 
01:07:12.420 --> 01:07:14.580 
Kathy Yelick: Thank you very much. Thanks for having me. 
 
430 
01:07:15.000 --> 01:07:15.840 
Julian Shun: Yes, thank you. 
 
431 
01:07:16.740 --> 01:07:19.650 
Kathy Yelick: Nice to have to travel so anyway. Yeah, definitely. 
 
432 
01:07:20.520 --> 01:07:21.660 
Kathy Yelick: Great. Alright. 
 
433 
01:07:22.800 --> 01:07:23.130 
Julian Shun: Alright. 
 


