
MIT CSAIL FastCode Seminar 10/26/2020: Professor Alex Pothen 
 
 
 
1 00:00:06.299 --> 00:00:15.570 
Julian Shun: Good afternoon, everyone. Welcome to the FastCode seminar today. So I'm very 
happy to have Alex Pothen as our speaker Alex is a professor of Computer Science. 
 
2 00:00:15.960 --> 00:00:28.020 
Julian Shun: At Purdue University, and he received his undergraduate degree from IIT Delhi and 
his PhD from Cornell, Alex. His research interests include combinatorial scientific computing 
 
3 00:00:28.470 --> 00:00:34.320 
Julian Shun: parallel computing and bioinformatics and Alex let the formation of the Communist 
oil scientific computing 
 
4 00:00:34.800 --> 00:00:45.780 
Julian Shun: Community within the society for Industrial and Applied Mathematics and He 
currently serves as the founding chair of the same activity group on applied in computational 
discrete algorithms. 
 
5 00:00:46.200 --> 00:00:57.300 
Julian Shun: Alex has mentored 20 PhD students postdoctoral scientists and research faculty 
who have gone on to successful careers at major universities do you labs and industry. 
 
6 00:00:58.470 --> 00:01:11.340 
Julian Shun: And Alex serves on the editorial board of the journal ACM as well as the Science 
Review and Alex is also a fellow of the society of Industrial and Applied Mathematics. 
 
7 00:01:11.820 --> 00:01:19.410 
Julian Shun: And today, Alex is going to talk to us about his work on approximate parallel graph 
algorithms. So I'll turn it over to you, Alex. 
 
8 00:01:20.550 --> 00:01:29.310 
Alex Pothen: Thank you. Julian, I trust everybody can hear me. I apologize. You can't see my 
face. That's because I'm presenting using my iPad and 
 
9 00:01:29.700 --> 00:01:32.790 
Alex Pothen: A program called Notability in which I have imported a PDF file. 
 
10 00:01:33.090 --> 00:01:36.060 
Alex Pothen: So unfortunately, I think. I don't think there's a way to keep my 
 
11 00:01:37.110 --> 00:01:47.910 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

2 

Alex Pothen: Camera on why that I'm screen sharing on that is not on this, on this app that for a 
second. Tell so so sorry about that. So I'm just a disembodied voice. 
 
12 00:01:48.720 --> 00:02:04.290 
Alex Pothen: From somewhere far away, but I hope that you will enjoy listening to this lecture. 
And please feel free to ask questions as we go along. And again, Julian, feel free to stop me at 
any point if there's a question coming through on the chat window and 
 
13 00:02:05.040 --> 00:02:06.270 
Alex Pothen: Ask. Sure. Okay. 
 
14 00:02:06.630 --> 00:02:15.060 
Alex Pothen: Alright, so, so as as Julian said, I'm going to talk about designing approximation 
algorithms as a paradigm for designing Tallulah 
 
15 00:02:16.080 --> 00:02:25.560 
Alex Pothen: So we have many different paradigms that we have for designing parallel for 
them. So for example, if it's data Paolo, you might want to petition the data or petition the 
graph. 
 
16 00:02:25.920 --> 00:02:40.200 
Alex Pothen: And then do computations on the sub graph and so on. And there are others like 
divide and conquer and pointed jumping and Delta stepping and that's all I wanted to today, 
talk about approximation algorithms themselves as a paradigm for designing 
 
17 00:02:42.120 --> 00:02:52.920 
Alex Pothen: And I want to motivate this by by showing you a result initially. So in this problem 
is called vertex, where it matching, which we will look at in a couple of slides. 
 
18 00:02:53.760 --> 00:02:59.550 
Alex Pothen: What I'm doing is I'm comparing an exact algorithm with a two thirds 
approximation now. 
 
19 00:03:00.480 --> 00:03:08.160 
Alex Pothen: So the two thirds approximation algorithm says I can't give you the exact solution, 
but I'll give you something that's within a factor of two thirds in the worst case, okay. 
 
20 00:03:08.670 --> 00:03:17.220 
Alex Pothen: And what we're doing is comparing against six problems and these have millions 
of vertices and say 10s of millions of edges, let's say, 
 
21 00:03:17.790 --> 00:03:32.280 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

3 

Alex Pothen: And you can see the exact algorithm takes typically something like, you know, an 
hour or so or slightly less than that. Right. And the approximation algorithm, which doesn't 
solve the problem exactly gives you a solution within 10 seconds. 
 
22 00:03:33.630 --> 00:03:41.880 
Alex Pothen: And although the approximation guarantees two thirds in practice, you actually 
get 99%, you know, or 98% or better. 
 
23 00:03:43.260 --> 00:03:49.380 
Alex Pothen: Okay, so here's this last problem that's interesting because this is not a very large 
problem has problems good these days but massive crafts. 
 
24 00:03:50.010 --> 00:03:56.520 
Alex Pothen: But still, because of the structure of this problem. The exact algorithm, you know, 
will not terminate, even in hundred dollars. 
 
25 00:03:57.240 --> 00:04:05.490 
Alex Pothen: Okay, it's pulling on the time complexity. It's still will not terminate in 100 hours, 
whereas the exact the approximation algorithm runs in under a minute. 
 
26 00:04:06.120 --> 00:04:16.020 
Alex Pothen: And of course because exact algorithm does not terminate. I don't know how 
close to to optimal. This is except for the fact that I have this guarantee that says I'm at least 
two thirds optimal, you know, 
 
27 00:04:16.560 --> 00:04:34.650 
Alex Pothen: A factor of two thirds of the optimal. So let's take a look at at at what you know. 
So first let's define some terminology and then we'll talk. Take a look at the problems that 
you're looking at so exact algorithm support solve the problem that's given to you and compute 
an exact solution. 
 
28 00:04:36.180 --> 00:04:41.610 
Alex Pothen: They may have a normal time complexity or even the problems are intractable 
than they might have expansion complexity. 
 
29 00:04:42.390 --> 00:04:52.650 
Alex Pothen: But even if you have problems like matching that we will look at today that have 
been on the time complexity. They can be quite slough a massive grass, grass with, you know, 
billions of edges. 
 
30 00:04:53.580 --> 00:05:07.110 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

4 

Alex Pothen: And often these algorithms are fairly sophisticated and there's not much 
concurrency and they're not easy to implement, even on serial machines, as many of you who 
have tried to implement some fairly challenging crap out with them can attest. 
 
 
31 00:05:08.220 --> 00:05:11.790 
Alex Pothen: So instead of exact algorithms will go to approximation on us. 
 
32 00:05:12.510 --> 00:05:24.180 
Alex Pothen: So here we give up on finding the exact solution. But he said, Okay, well, just 
wanted to prove something about the solution that you have came at it. Some factors and 
some factor of the optimum the worst case. 
 
33 00:05:25.020 --> 00:05:30.600 
Alex Pothen: Factor that you can obtain for all over all problems because the approximation 
ratio of the of the algorithm. 
 
34 00:05:31.650 --> 00:05:42.210 
Alex Pothen: But as you saw in my previous slide these solutions can be nearly optimal in 
practice because the worst case approximation ratio is not what you actually get, you know, in 
an average case sense 
 
35 00:05:43.440 --> 00:05:52.320 
Alex Pothen: And these algorithms of simpler therefore can be implemented efficiently can also 
be designed to have concurrency until we can also implement them efficiently on power ships. 
 
36 00:05:53.550 --> 00:06:04.740 
Alex Pothen: So I want to make a distinction between approximation algorithms and heuristic 
algorithms. So heuristics are where there is no approximation ratio that they can prove what 
that is is known 
 
37 00:06:05.460 --> 00:06:11.460 
Alex Pothen: In many cases, it may be possible to prove that a good approximation algorithm 
does not exist because we have 
 
38 00:06:11.760 --> 00:06:22.080 
Alex Pothen: You know, some resolved that says, unless basically envy the such and such an 
algorithm know such and such a problem cannot be approximated within such in such a factor 
and someone, and there are many results of that nature. 
 
39 00:06:24.150 --> 00:06:34.800 
Alex Pothen: So let's now look at the matching problem itself. So hopefully many of you have 
seen matching in a in a graduate class in in in in algorithms. 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

5 

 
40 00:06:35.670 --> 00:06:47.910 
Alex Pothen: But any case give ghosts. So a matching is a set of vertex disjointed edges. So this 
means that we choose at most one edge incident on each works. So the gold edges here, the 
three of them. 
 
41 00:06:48.240 --> 00:06:55.200 
Alex Pothen: They form a matching because there's at most one gold edge incident on each 
box. Okay. There's none on this, but it says at most one 
 
42 00:06:56.430 --> 00:07:06.840 
Alex Pothen: So now we can ask. So if I give you this problem and ask you to find a matching, 
you could say, well, what do you want me to do, Joe. Should I maximize the cardinality. In this 
case it would be three. 
 
43 00:07:07.260 --> 00:07:20.790 
Alex Pothen: When should I put weight on the edges. And then, you know, add the some the 
weights of the matching edges. And so, and then maximize that some so we'll call the maximum 
edge rated matching problem. 
 
44 00:07:22.410 --> 00:07:27.870 
Alex Pothen: We could in fact put weight on the vertices. And then, and then 
 
45 00:07:28.770 --> 00:07:37.860 
Alex Pothen: Sum up the weeks of the endpoints of the matching edges so that will be a vertex 
weighted maximum vertex credit matching problem. So this is a problem that I'm looking at 
first. 
 
46 00:07:38.190 --> 00:07:48.960 
Alex Pothen: Then I'll look at this problem called be matching where instead of having this 
constrained there's at most one edge, we could say, well, there's that most some BV edges. So, 
for example, do if you'd like. 
 
47 00:07:49.710 --> 00:07:53.730 
Alex Pothen: But we could choose be the to be dependent on the itself, you know, and so on. 
 
48 00:07:54.120 --> 00:08:05.700 
Alex Pothen: Clean. It's got to be less than the degree of the vertex, but we could choose 
different that is to be and then again we could ask for a be managing all of these, these 
problems, you know, also have very nice applications. I'm looking at that as well. In the stock. 
 
49 00:08:07.320 --> 00:08:15.150 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

6 

Alex Pothen: So here's a quick sort of overview of where things are in this in this area when it 
comes to maximum matching problems. 
 
50 00:08:15.540 --> 00:08:23.100 
Alex Pothen: So if you look at cardinality. There is something like a point 866 approximation 
algorithm that was designed in the last few years. 
 
51 00:08:23.940 --> 00:08:31.320 
Alex Pothen: For estimated matching, you can get arbitrarily close to one. There's a one minus 
excellent approximation algorithm that dates back about six years to sell. 
 
52 00:08:31.890 --> 00:08:43.560 
Alex Pothen: Will I will discuss this algorithm, but I'll show you some results from this album, 
there's a two thirds minus excellent approximation algorithm. Unfortunately, these algorithms 
are fairly sophisticated and very hard to implement in parallel. 
 
 
53 00:08:44.790 --> 00:08:52.320 
Alex Pothen: But, like, one can implement many half approximation algorithm. So there are 
actually, at least you know 10 or so. 
 
54 00:08:52.770 --> 00:09:00.930 
Alex Pothen: Different half approximation algorithms for this problem. I'm going to talk about 
one of them you know by former student and and a colleague 
 
55 00:09:01.590 --> 00:09:12.570 
Alex Pothen: That was designed a few years ago, and then I'll talk about the work that's rated 
matching problem, which is what I'll go to next. So you can. There also you can get arbitrarily 
close to one, at least within some 
 
56 00:09:13.530 --> 00:09:19.290 
Alex Pothen: parameter k which is the length of a search path. And I'll talk about that in a bit. 
And, and then 
 
57 00:09:19.950 --> 00:09:30.720 
Alex Pothen: You can also look at edge weighted be matching. And there we have a half 
approximation algorithm that actually derives from this graduated matching algorithm of man 
and how the funnel works. So I'll talk about both of these. Let's talk 
 
58 00:09:31.980 --> 00:09:39.390 
Alex Pothen: And and some of these algorithms can be implemented in parallel, some of them 
cannot and so on. So, you know, we'll see them. 
 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

7 

59 00:09:39.990 --> 00:09:44.280 
Alex Pothen: Alright, so now for the first problem, which is a card maximum vertex, where the 
matching problem. 
 
60 00:09:44.880 --> 00:09:59.610 
Alex Pothen: And so in this case. Remember the weights around the vertices and Rob, you're 
asked to do is to find a matching and weight of a matching. This is some of the weeks of the 
endpoints of the matching edges and we want to maximize that something that's what we want 
to do. 
 
61 00:10:00.720 --> 00:10:06.150 
Alex Pothen: So one of the first questions I like to answer. When I look back, I'm giving a 
problem like this to think about 
 
62 00:10:06.510 --> 00:10:17.610 
Alex Pothen: Is to ask, you know, what is the underlying cause editorial structure. He said some 
beautiful communitarian structure underlying the problem that is helpful in solving this 
problem at least viewing this problem in a casual way. 
 
63 00:10:18.390 --> 00:10:24.270 
Alex Pothen: And the answer is yes, there is in fact a structure called a Metroid that color 
matching Metroid, that was 
 
64 00:10:24.930 --> 00:10:29.370 
Alex Pothen: Discussed very early BY JACK Edmonds and re flickers and in 1965 
 
65 00:10:29.910 --> 00:10:34.290 
Alex Pothen: Unfortunately, if you look at a book on matrix theory, you're not likely to find a 
good discussion. 
 
66 00:10:34.560 --> 00:10:42.810 
Alex Pothen: Of matching Metroid so very few books actually discuss them. So there's not a lot 
that has been done in this problem, but there is this beautiful matrix that we can look at 
 
67 00:10:43.680 --> 00:11:01.650 
Alex Pothen: And remind you that a Metroid is a collection is a pair of have a good set of 
vertices and some a collection of subsets of vertices that will call independent subsets and what 
makes us you know vertex upset independent well it's independent if the vertices in that set. 
 
68 00:11:03.030 --> 00:11:15.270 
Alex Pothen: Are you know contained among the endpoints, have some matching. So choose 
any matching doesn't have to be maximum any cardinality. And then you ask yourself, look at 
those endpoints. 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

8 

 
69 00:11:15.810 --> 00:11:24.720 
Alex Pothen: And then is i a subset of some of some such matching endpoints of some such 
matching. Okay then. Then you'll say it's independent 
 
70 00:11:26.310 --> 00:11:37.020 
Alex Pothen: The nice thing about having a matrix structure is that there is a greedy algorithm 
that solves the problem optimally, so you don't have to do anything more than to just look at 
the greedy paradigm for designing an hour. 
 
71 00:11:37.920 --> 00:11:44.160 
Alex Pothen: And so, turns out that the matrix greedy algorithm, which I will explain in just a 
little bit computing up to a match. 
 
72 00:11:44.700 --> 00:11:51.510 
Alex Pothen: Okay. And furthermore, if you are willing to look at problems that are even more 
general. So you're not looking at some of 
 
73 00:11:51.870 --> 00:12:04.920 
Alex Pothen: The weights of the edges as your objective function, but you're looking at 
something like the square root of the size of the weight or something like that, right, then those 
are called some major objective functions and there. It turns out to be a half half 
approximation. 
 
74 00:12:07.080 --> 00:12:14.910 
Alex Pothen: Okay, so what does it make you a good yeah with them simply says take the 
vertices, put it sort them, put them in not increasing order weights. 
 
75 00:12:15.300 --> 00:12:22.380 
Alex Pothen: And then choose the vertex to match and then you know you can you see if you 
can find a matching that includes that Botox. 
 
76 00:12:22.740 --> 00:12:30.300 
Alex Pothen: If it does, then you okay that goes into the into the set the independent said that 
you have, if not you rejected and you continue 
 
77 00:12:30.720 --> 00:12:43.200 
Alex Pothen: Right so clearly searching for, you know, a matching which which we will discuss in 
terms of search box in the next couple of slides is going to be linear in the number of the linear 
in the number of edges. 
 
78 00:12:44.730 --> 00:12:54.150 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

9 

Alex Pothen: And and there are in such variety. So it's actually an order in and time out for 
them. It turns out that you can implement it a little faster, but particularly particularly helpful. 
 
79 00:12:54.660 --> 00:13:02.430 
Alex Pothen: Unfortunately, this is this order nm time is phenomenal. But it's still too slow for 
grabs, with to billions of vertices and edges. Okay. 
 
80 00:13:03.660 --> 00:13:09.930 
Alex Pothen: And so here you know so those of you know something about matching know that 
you look for certain paths called mounting paths or something. 
 
81 00:13:10.710 --> 00:13:16.530 
Alex Pothen: But by restricting the length of such search paths you can in fact get two thirds 
approximation algorithm. 
 
82 00:13:17.160 --> 00:13:24.630 
Alex Pothen: But with near linear time complexity. So instead of the factor and you have 
something like the maximum degree. So if you have a degree boundary graph. 
 
83 00:13:24.990 --> 00:13:34.500 
Alex Pothen: Then it's actually, you know, linear time linear time algorithm. Okay. 
Unfortunately, although we have this beautiful theory to undergird our work. 
 
84 00:13:35.370 --> 00:13:40.890 
Alex Pothen: These algorithms don't have much concurrency, because we do have to process 
the vertices in a particular order. 
 
85 00:13:41.250 --> 00:13:54.570 
Alex Pothen: But you can that you can in fact cheat a little bit, you can kind of lazy really 
algorithms and so on. So, that I think you can do but but it turns out that there is a better 
approach and then that's the approach that I want to turn to in the next few minutes or so. 
 
86 00:13:56.460 --> 00:14:08.040 
Alex Pothen: So here I need a couple of concepts I knew the concept of romantic path which I 
had alluded to, just a little bit, which is the the framework underlying most matching 
algorithms. 
 
87 00:14:08.460 --> 00:14:16.950 
Alex Pothen: Right, so you have a matching in the graph startling empty matching, let's say, and 
then they'll say that a path is alternating if it's 
 
88 00:14:18.120 --> 00:14:28.800 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

10 

Alex Pothen: Just belong is doesn't belong to the matching belongs to the matching and belong. 
It doesn't belong to the matching. So, this is an alternating path right so the matching and non 
matching just sort of alternate 
 
89 00:14:29.760 --> 00:14:38.430 
Alex Pothen: These in this case will call us and augmenting path if there are, you know, there's 
one more non matching edge than there is a matching edge. 
 
90 00:14:38.700 --> 00:14:46.860 
Alex Pothen: Because then by swapping matching and non matching. I just asked here we can 
increase outside the cardinality of the matching to to 
 
91 00:14:47.160 --> 00:14:58.650 
Alex Pothen: You know, instead of one here, right. And then we have unmatched that particular 
edge. Okay, so in this case we have an odd length alternating path that begins and ends with an 
unmatched vortex. 
 
92 00:14:59.040 --> 00:15:08.970 
Alex Pothen: And by simply swapping matching and non matching edges be increased the 
cardinality. So this is essentially the basic framework that is used for a lot of matching 
algorithms. 
 
93 00:15:09.870 --> 00:15:20.910 
Alex Pothen: Even when there are weeks, but I need one more concept and that concept is 
called awake increasing path. So this is now also an alternating path. So the matching and non 
matching. I just thought 
 
94 00:15:21.960 --> 00:15:33.510 
Alex Pothen: But for now we have weight on the vertices in this case. And I have a this is an 
even length alternating pencil exactly an equal number of matching edges and non matching 
edges. 
 
95 00:15:34.050 --> 00:15:44.070 
Alex Pothen: And now I have the non the unmatched end point is heavier than the match 
endpoint. So again, by swapping matching and non matching. I just as I haven't gotten here. 
 
96 00:15:45.540 --> 00:15:54.450 
Alex Pothen: I can know increase the week of the matching because I lose three because I I 
make an unmatched. But then I gained 10 because I've matched this edge. 
 
97 00:15:54.960 --> 00:16:03.930 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

11 

Alex Pothen: So again, by using this alternating pattern swapping matching and non matching 
edges I can increase the weight. So we'll call this a wage increasing path or an increasing path 
for short. 
 
98 00:16:04.500 --> 00:16:10.320 
Alex Pothen: So these are the two paths that we need. We need the concept of an automatic 
back then, we need the concept of awake increasing death. 
 
99 00:16:10.830 --> 00:16:18.150 
Alex Pothen: So once we have these two, we can generalize a little bit just to make it easier for 
us to think about us. 
 
100 00:16:18.630 --> 00:16:26.400 
Alex Pothen: So I will say, and augmenting path or a weight increasing path, but most keen on 
matching edges you secure mentation 
 
101 00:16:26.910 --> 00:16:37.860 
Alex Pothen: Okay. So for example, this is a one augmentation because it's a it's an authentic 
path with exactly one non matching edge. And so by matching it I can increase the size of the 
matching. So, not putting path. 
 
102 00:16:38.430 --> 00:16:48.000 
Alex Pothen: Here's a way to increasing path of link to their, you know, one non matching edge 
in one matching edge. But if the weights are appropriate. So I can buy swapping the 
 
103 00:16:48.270 --> 00:16:56.400 
Alex Pothen: You know, matching and non matching edges I could increase the weight. So this 
is, in fact, also a one augmentation because it's got at most one non matching edge. 
 
104 00:16:57.630 --> 00:17:01.200 
Alex Pothen: For to have been patients, you know, I have to consider more 
 
105 00:17:01.560 --> 00:17:07.410 
Alex Pothen: So in this example. This is an authentic path of length three, because they can be 
solved by swapping matching and non matching edges. 
 
106 00:17:07.650 --> 00:17:14.820 
Alex Pothen: I can increase the the cardinality of their matching and therefore, the way to the 
matching. In this case, and here there are most to non matching edges. 
 
107 00:17:15.810 --> 00:17:22.590 
Alex Pothen: And then here's a way to increasing path with Atmos to non matching it just again 
by swapping matching and non matching edges quite could increase the way 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

12 

 
108 00:17:23.280 --> 00:17:29.250 
Alex Pothen: That this turns out that these forecasts are all that I need to consider to for to 
have mutations. 
 
109 00:17:29.880 --> 00:17:36.840 
Alex Pothen: But of course you could think about doing this well killed mutations. And so we're 
at most kids are at most keen on matching edges. 
 
110 00:17:37.380 --> 00:17:47.550 
Alex Pothen: Okay, so here's a theorem says if a matching does not admitted compensation, 
then in India it is ok ok plus one approximation to maximum what a traitor matching. Okay. 
 
111 00:17:48.120 --> 00:17:55.830 
Alex Pothen: So if you put k equal to one, then you can have approximation with them so 
simply find a you know a maximal set of 
 
112 00:17:56.190 --> 00:18:01.680 
Alex Pothen: Edges but chosen and careful way because we are choosing to match from the 
heaviest put vertices 
 
113 00:18:02.190 --> 00:18:07.410 
Alex Pothen: Down to the you know the latest, greatest season so on and if you just take one to 
two, then you get two thirds approximation. 
 
114 00:18:08.130 --> 00:18:14.130 
Alex Pothen: So all you really have to do is to just keep looking for medications if there isn't 
one, then you're done, you have to start the process. 
 
115 00:18:14.970 --> 00:18:25.260 
Alex Pothen: So now you're looking for short augmenting paths and short wake increasing 
paths. And so this is a chance that you can do this in parallel, just to implement this in title. 
That's what we do. 
 
116 00:18:25.830 --> 00:18:31.860 
Alex Pothen: Okay, now turns out that's such a theorem is true for maximum cardinality 
matching and maximum edge weighted matching as well. 
 
117 00:18:32.130 --> 00:18:39.840 
Alex Pothen: But you have to define killed mutations in an appropriate way that's, you know, 
the set of guided meditations becomes, you know, 
 
118 00:18:40.140 --> 00:18:48.420 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

13 

Alex Pothen: For X rated matching it actually becomes a little richer, that there are other things 
that you need to consider, for example, you have to consider some cycles and things like that. 
But I don't need to do that here. 
 
119 00:18:49.800 --> 00:18:58.560 
Alex Pothen: Okay, so, so then we have an algorithm. So here's a key over k plus one 
approximation algorithm for matching works with matching the serial algorithm. So 
 
120 00:18:59.130 --> 00:19:11.610 
Alex Pothen: Typically you initialize with an approximation Matt Clark County match him 
because I cannot imagine turns out to be easier to do so on these sort of ideas will work the 
ideas that I just don't talk to you about 
 
121 00:19:12.300 --> 00:19:19.470 
Alex Pothen: You know will work in that case as well so you can initialize so that's important 
practically to get really fast and times. 
 
122 00:19:19.980 --> 00:19:31.140 
Alex Pothen: And then why lucky augmentation exists search for experimentation P from an 
unmatched vertex you and then if he has found, go ahead and open the current matching and 
update the set of one match. Mrs. 
 
123 00:19:31.620 --> 00:19:37.920 
Alex Pothen: Notice that I don't say anything about how you should choose you. I mean, you 
can choose any on match what next. So this is really what 
 
124 00:19:38.340 --> 00:19:45.420 
Alex Pothen: Makes it possible for this algorithm to be parallel and and this is what john with 
my student. I'm a doubt hurts. That'd be published this year. 
 
125 00:19:46.230 --> 00:19:55.200 
Alex Pothen: And then here. So, you know, so for small k, we can hope to implement this in 
parallel. Right. And so here's a equal to two thirds approximation algorithm internal 
 
126 00:19:55.800 --> 00:20:03.990 
Alex Pothen: I'm not giving you a lot of details here, but I'm just sort of giving you a high level 
view of the algorithm. So again, initialized with an approximate cardinality matching in 
computer again panel. 
 
127 00:20:04.530 --> 00:20:08.310 
Alex Pothen: And if I do on petition exists. So this is, I'm thinking about chairman ray machines. 
 
128 00:20:08.940 --> 00:20:17.820 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

14 

Alex Pothen: in peril do search for a termination fee from an unnatural tax if p is found. Now we 
have to lock the vertices, because we have to make sure that 
 
129 00:20:18.630 --> 00:20:25.950 
Alex Pothen: You know, different threads. Don't try to augment along different paths and then 
they run into overlapping 
 
130 00:20:26.460 --> 00:20:36.690 
Alex Pothen: PubMed incarcerate increasing guts. So, but it's a lobster obtain, you can go ahead 
and augment and then you know once you are ready to release our locks you update the setup 
on match vertices 
 
131 00:20:37.200 --> 00:20:42.060 
Alex Pothen: So if you have use of mending pads, then you never unmatchable attacks. 
 
132 00:20:42.870 --> 00:20:54.480 
Alex Pothen: But if you use weight increasing that you do as I showed you. And therefore, you 
may have to update the set of on match where it is and so on. And then, you know, keep 
looking from unmatched words export to other magicians and then that's 
 
133 00:20:56.010 --> 00:21:01.320 
Alex Pothen: Okay, now here's the interesting part. So if the algorithm that one needs to pay 
attention to. 
 
134 00:21:02.160 --> 00:21:17.070 
Alex Pothen: So we can in fact create LifeLock on deadlock and starvation in this context. If you 
are countless about the way you go about doing your own limitations. Right. So I have an 
example here where I have created a cyclic graph. 
 
135 00:21:18.150 --> 00:21:29.040 
Alex Pothen: That can cause a cyclic. Wait, so here it is. I have you one V1, V2, V3, V4. So this is 
a weight increasing path of length for we're increasing path of length for 
 
136 00:21:29.940 --> 00:21:33.870 
Alex Pothen: Here's another week, increasing path of length for that sort of overlaps with the 
 
137 00:21:34.350 --> 00:21:41.880 
Alex Pothen: Previous one and so on. So I have these great increasing paths that overlap. And 
then finally, this one here that overlaps now way. 
 
138 00:21:42.270 --> 00:21:49.620 
Alex Pothen: Right. And now I can create a symbolic link if I'm careless about the way I go about 
walking through the seas, you know, on, on painting paths. 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

15 

 
139 00:21:50.010 --> 00:21:57.330 
Alex Pothen: So this picture actually shows you that. So here's the thread to one that is trying to 
augment along increase the weight along this path. 
 
140 00:21:57.690 --> 00:22:09.060 
Alex Pothen: And it goes ahead and locks. This works. But before I can walk this works, you 
know, another thread to to, you know, augments along this path and locks that projects and so 
on. So you see the problem, you know, 
 
141 00:22:09.480 --> 00:22:16.980 
Alex Pothen: So they have all locked one vertex. Nobody can make progress. They all unlock 
their go back and locking again. So this is called 
 
142 00:22:17.940 --> 00:22:27.900 
Alex Pothen: Know, but there are plenty of documentation to do but nobody can make any 
progress because of the SEC liquid okay now turns out that you can create cyclic wait for 
augmenting path of length three as well. 
 
143 00:22:30.420 --> 00:22:32.700 
Alex Pothen: And so there is an appropriate locking protocol. 
 
144 00:22:33.390 --> 00:22:42.510 
Alex Pothen: I won't go to the details here, but all you have to do is to kind of make sure that 
you are careful about the way you lock things. For example, if you have an augmenting path. 
We don't want 
 
145 00:22:43.200 --> 00:22:51.240 
Alex Pothen: Vertices at either end, trying to augment along the same path. So we let one of 
them high priority. So the more number one gets to augment the other one doesn't. 
 
146 00:22:51.690 --> 00:23:00.990 
Alex Pothen: And if you have to lock a match edge. You know, we lock the lower number than 
point. So we look at the ordering of V2, V3 covert slower gets to lock that edge and so on. 
 
147 00:23:01.920 --> 00:23:11.310 
Alex Pothen: And and in this, in such a case what we would do is we would first lock be one, 
then we would lock before the nude lock the minimum of 323 and that that lock the path for 
us. 
 
148 00:23:12.180 --> 00:23:22.350 
Alex Pothen: If that's a augmenting part. Here's a way to increase in path. So here, you know, 
we have to match edges. And so we look at the n minus a minimum of V1 and V2. 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

16 

 
149 00:23:22.710 --> 00:23:28.650 
Alex Pothen: An empty is a minimum of weekly and before it's just a lower number 10 points of 
a match matching adds that we will lock. 
 
150 00:23:29.130 --> 00:23:37.890 
Alex Pothen: And now we'll find a minimum of M one M two and the maximum of m&m to and 
then walk again in order you and then these vertices 
 
151 00:23:38.790 --> 00:23:48.660 
Alex Pothen: Now if you do that, you can prove that this locking protocol will avoid deadlock 
like locking starvation. So here's the theorem that says if there is it to have condition in the 
graph. 
 
152 00:23:49.260 --> 00:23:56.340 
Alex Pothen: In every iteration of the parallel at least one thread from every part of situation 
cyclic wait graph will succeed in matching 
 
153 00:23:57.480 --> 00:24:10.890 
Alex Pothen: So the algorithm that I showed you in in every iteration, at least you know at least 
one thread. But in fact, you don't, if there's a plenty of order to join sick. Look. Wait, then you 
know one from every one of those 
 
154 00:24:11.580 --> 00:24:23.670 
Alex Pothen: cyclic graph will succeed and therefore the algorithm will keep making progress. 
So if you want just scan spin forever. So we don't have any of these problems with the 
appropriate locking protocols. 
 
155 00:24:24.720 --> 00:24:30.000 
Alex Pothen: Okay, so let me show you some cereal results. And I've already shown you in the 
very first slide. 
 
156 00:24:30.240 --> 00:24:36.480 
Alex Pothen: To motivate the problem, you know that there are problems graphs on which you 
can the exact algorithm to take hundreds of hours so 
 
157 00:24:36.720 --> 00:24:43.860 
Alex Pothen: Here I'm choosing problems with 100 million vertices and about a billion edges 
where the exact algorithm actually terminates. 
 
158 00:24:44.220 --> 00:24:50.430 
Alex Pothen: So, and then I'm taking the geometric mean of the results on 12 graphs and I'm. 
That's what I'm showing you 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

17 

 
159 00:24:51.150 --> 00:24:57.300 
Alex Pothen: And I'm comparing three different algorithms for edge weighted matching with 
three different algorithms of vertex period matching 
 
160 00:24:57.750 --> 00:25:10.380 
Alex Pothen: Now I didn't tell you this but you know clearly if you have a virtuous where the 
matching problem. You can take the weights of the vertices, add them and assign them to the 
edge. So take the end point of it. So here's an SUV. 
 
161 00:25:12.720 --> 00:25:20.190 
Alex Pothen: Right. Add the weight of Wu plus WV and assign that to the edge so you know 
made an edge weighted matching problem. 
 
162 00:25:20.820 --> 00:25:29.370 
Alex Pothen: It turns out this is a good way to create really hard just problems fridge rater 
matching problems because we put random weight on the vertices. And you do this for 
 
163 00:25:30.060 --> 00:25:36.420 
Alex Pothen: You you create such a problem, you know, these algorithms will take forever to 
terminate their data matching problems would take forever. 
 
164 00:25:38.100 --> 00:25:45.870 
Alex Pothen: But, but anyway. So here are the edge weighted matching algorithms 
approximation algorithms. And here are the vertex period matching approximation algorithms. 
 
165 00:25:46.230 --> 00:25:56.340 
Alex Pothen: So this is the one minus episode approximation algorithm you to do an entity that 
I mentioned a little bit earlier. And then here you know the other algorithms. So this is a half 
approximation now. 
 
166 00:25:57.750 --> 00:26:12.000 
Alex Pothen: And then here are the vertex weighted matching algorithms. And so this is the the 
based on the Metroid idea. So the two towards that only uses augmenting paths and then these 
are the orientation desktop based algorithms that I just asked you about 
 
167 00:26:13.170 --> 00:26:21.780 
Alex Pothen: These algorithms that you can see are really, really close to optimal so so one way 
to measure how good they are used to measure this gap to a community, which is 
 
168 00:26:22.470 --> 00:26:32.100 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

18 

Alex Pothen: One minus the weight of the approximate matching divide by the way to the 
maximum matching. So, you know, so if this is like 1% like point 01 and then multiply by 100 so 
this is that you get 1% or so. 
 
169 00:26:32.790 --> 00:26:35.460 
Alex Pothen: And you can notice that if you look at the gap to optimize 
 
170 00:26:36.150 --> 00:26:46.080 
Alex Pothen: The two thirds of condition algorithm that be designed has about, you know, point 
08 percent or so. So that's really, really close to optimal but they're all doing fairly, fairly well 
actually 
 
171 00:26:47.070 --> 00:26:57.540 
Alex Pothen: And. And if you look at the run times the one minus approximation algorithm 
essentially slower than the exact algorithm. So it's Georgia so scaling best for them it's a fairly 
sophisticated algorithm. 
 
172 00:26:58.170 --> 00:27:07.590 
Alex Pothen: Implemented cheerily here and the two thirds algorithm is just marginally faster 
but you know the other algorithms that happen transmission algorithms and the two thirds 
transmission algorithms. 
 
173 00:27:08.220 --> 00:27:14.970 
Alex Pothen: Are you know about 2200 times faster than, than the exact exact opposite put this 
into problems. 
 
174 00:27:15.360 --> 00:27:26.460 
Alex Pothen: Of course, these numbers will vary a little bit depending on which set of problems 
you choose, as I said, I showed you a problem where in fact the exact number terminates so 
that desire to performance. He could be infinite. You know those problems. 
 
175 00:27:27.900 --> 00:27:36.930 
Alex Pothen: Okay, so that was the first problem that I wanted to talk about. And now I want to 
talk a little bit about the edge weighted matching problem and to be matching prop. 
 
176 00:27:37.920 --> 00:27:48.840 
Alex Pothen: But before I plug and chug right straight ahead. I'll take a second to give everybody 
a chance to brief and also to ask if there any questions. 
 
177 00:27:52.950 --> 00:27:58.050 
Julian Shun: If anyone has any questions, feel free to speak up or you can also type in the chat. 
 
178 00:28:02.790 --> 00:28:07.950 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

19 

Julian Shun: There's a question from Utah long, how many cores are used in the experiments. 
 
179 00:28:08.850 --> 00:28:17.760 
Alex Pothen: Yeah, so I didn't show you the results there. But for example, I'm going to talk 
about the be matching problem and you will see that I use. I like 16,000 cores, so I will get to 
them. 
 
180 00:28:19.110 --> 00:28:19.590 
Julian Shun: So they're 
 
181 00:28:19.650 --> 00:28:22.800 
Alex Pothen: Not all of these, not all of these problems actually have 
 
182 00:28:23.460 --> 00:28:32.550 
Alex Pothen: So the results that I showed you for the vertex right. Imagine problem. These are 
not just a serial results. It's not our results. We do have power results on chairman MRI 
machines with about 20 minutes or so. 
 
183 00:28:33.480 --> 00:28:44.910 
Alex Pothen: But in fact, there's no reason why we can we can implement them, you know, with 
something a little more effort on larger numbers of course and for the be makin problem. In 
fact, I'll show you that we have 16,000 courts and I'll show you. 
 
184 00:28:47.550 --> 00:28:47.760 
Julian Shun: So, 
 
185 00:28:47.820 --> 00:28:55.080 
Alex Pothen: Thank you. Thanks. Okay. Alright, so I'm going to continue. And so here, so we 
have 
 
186 
00:28:55.770 --> 00:29:03.510 
Alex Pothen: Integrated maximum edge way to be matching problem. So notice me now have a 
function be and that could depend on the particular vertex v. 
 
187 00:29:03.840 --> 00:29:13.200 
Alex Pothen: And then again we have to say, I must be big. So before we said at most one edge. 
Now he said most be the edges. And so here unfortunately these colors and not terribly 
 
188 00:29:13.980 --> 00:29:19.020 
Alex Pothen: Different. But, you know, so this is my my to matching in this graph, those edges 
right 
 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

20 

189 00:29:19.800 --> 00:29:25.380 
Alex Pothen: And notice that this works only has one green agents that are not sort of this one, 
but I really can't increase the 
 
190 00:29:25.650 --> 00:29:32.310 
Alex Pothen: Size of the cardinality that matching because if I just, if I increase this one that I 
wanted to constrain that there are only two green adjustments on that. 
 
191 00:29:32.910 --> 00:29:42.030 
Alex Pothen: On this works. Similarly, if I choose this one I wanted to constrain the, the only 
two at most two it green or just internet on that vortex, and so on. So, in fact, I can do any 
better on the screen. 
 
192 00:29:43.170 --> 00:29:47.280 
Alex Pothen: Okay, but for a simple example. I made be uniform, but it doesn't have to be. 
 
193 00:29:48.630 --> 00:29:59.490 
Alex Pothen: Alright, so again, the first question I would ask is what's the underlying 
communitarian structure. He said some structure that we can exploit or that they can work off 
of it. No, and the underlying 
 
194 00:30:00.750 --> 00:30:06.480 
Alex Pothen: Structure here. You said to extendable system. Right. So here, this is a relaxation 
of a 
 
195 00:30:06.900 --> 00:30:12.360 
Alex Pothen: Metroid right here you have a set of edges. So before we had the sort of vertices, 
but now you have a set of edges. 
 
196 00:30:12.660 --> 00:30:24.720 
Alex Pothen: And we have substance of edges and again we will say a substance of edges 
belong to this collection of, you know, sort of us to extend about system in the following way. 
So I give you tubes will say that, you know, 
 
197 00:30:25.920 --> 00:30:38.670 
Alex Pothen: Set belongs to that collection of matching. So, so we just look at subsets of 
matching engines. That's all we look at. So if there is a matching, then all they're just in their 
belong to belong to some some some set here. 
 
198 00:30:39.030 --> 00:30:44.790 
Alex Pothen: It's a collection of those centers. So I give you a to be matching and one of them to 
an empty container that one. 
 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

21 

199 00:30:45.420 --> 00:31:00.540 
Alex Pothen: And there's an edge, he that does not belong to him, too. And so add one plus is a 
be matching but empty plus ease not then you know Metroid case. All you have to do is to 
remove one edge and you will be able to make that work. But in the case of 
 
200 00:31:01.590 --> 00:31:09.480 
Alex Pothen: To extendable system, you have to remove about two at most two edges and then 
you know you have a be match. 
 
201 00:31:09.900 --> 00:31:15.690 
Alex Pothen: So again, in this case, I can draw you a picture. So here's a vertex you and here's a 
vertex we 
 
202 00:31:16.020 --> 00:31:26.940 
Alex Pothen: And it turns out that. Me too. So this is the edge P M two plus, he is not a 
matching and be matching. Well, it could be because there's some edge here and there's some 
edge here. 
 
203 00:31:27.480 --> 00:31:35.250 
Alex Pothen: That why so adding this edge violates the be constraints on you and the B complex 
and be well okay I kind of wanted from here and I'm going to move one edge from there. 
 
204 00:31:35.520 --> 00:31:51.630 
Alex Pothen: And then I will be able to satisfy be matching constraint again. And so that's the, 
that's the result here that I remove at most two edges. And so that makes it to external okay 
and and so it's quite easy to see that would be matching is it or one matching is also a 
tournament system. 
 
205 00:31:52.710 --> 00:31:57.630 
Alex Pothen: Now, Julian mastery prove the theorem, that's us for a character and have a 
system. 
 
206 00:31:58.170 --> 00:32:08.640 
Alex Pothen: Where you know the size of why now is less than case or vetoed by less than equal 
to for it to external system but ok external system, the greedy algorithm is the one okay 
approximation to the optimal solution. Okay. 
 
207 00:32:09.060 --> 00:32:14.970 
Alex Pothen: And Tesla greedy algorithm for for for be matching. It's to live case too, so we 
have a half approximation now. 
 
208 00:32:15.840 --> 00:32:27.540 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

22 

Alex Pothen: Now this is not the metro duty algorithm. This greedy algorithm is a greedy 
algorithm that simply chess. Okay, can I add this edge and create satisfy the BU and BV 
constraint. If so, I've added. If not, I want 
 
209 00:32:27.840 --> 00:32:36.480 
Alex Pothen: So it's not looking for amending power to read increasing card. So none of that 
none of those things at all. It's just, just choosing a maximum set of edges to had to, to the 
matching 
 
210 00:32:37.500 --> 00:32:46.530 
Alex Pothen: Okay, right. So again, the beauty of them. It's simply control just annoying 
increasing order weights to, again, you have to sort them and control them in that particular 
order. 
 
211 00:32:46.860 --> 00:32:54.090 
Alex Pothen: And then you can add an edge in the matching fits that a spice to be constraints. 
So know searching for augmenting paths are really interesting parts or any of those things at all. 
 
212 00:32:54.720 --> 00:33:04.440 
Alex Pothen: And again, this algorithm, you know, you can implement it in towel. But it turns 
out that there is a an algorithm that increases the concurrency, much, much more. And that's 
what I turned to next. 
 
213 00:33:04.950 --> 00:33:11.970 
Alex Pothen: And that algorithm is called a pseudo algorithm. And this is due to a colleague 
credit minor at the University of Bergen, Norway, 
 
214 00:33:12.450 --> 00:33:17.040 
Alex Pothen: And mounted on a panel or former PhD student who is now at Pacific Northwest 
National 
 
215 00:33:17.910 --> 00:33:25.110 
Alex Pothen: And this algorithm is very similar to the stable matching algorithms that you may 
have heard of, definitely. It's very famous because um 
 
216 00:33:25.500 --> 00:33:41.220 
Alex Pothen: Let's see. Gail unfortunately passed away, but Shapley won the Nobel Memorial 
Prize in Economics in 2012, I believe, for this work that they did in the 60s, right. So this is 
similar to the stable matching algorithms of Galen Shapley and look at the end goal. 
 
217 00:33:42.270 --> 00:33:48.960 
Alex Pothen: And so it's based on making proposals and the whole idea is that anybody can 
make proposals so 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

23 

 
218 00:33:49.320 --> 00:34:02.310 
Alex Pothen: You just have to make sure that you proposed in a particular order to your 
neighbors. So proposed your neighbors and non increasing order. The weights. So essentially 
you have a ranking as you would have in a stable matching problem because us a way to the 
ranking and then you 
 
219 00:34:03.600 --> 00:34:13.080 
Alex Pothen: make proposals in in non increasing order of your writings. OK, now the proposals 
can be accepted or they can be a noun right and what 
 
220 00:34:13.680 --> 00:34:23.100 
Alex Pothen: What happens is that each works keeps track of the best proposal, it has received. 
Now I'll draw a picture on the next slide. So just bear with me for a second here while we go to 
this algorithm. 
 
221 00:34:23.550 --> 00:34:31.620 
Alex Pothen: So a vertex you propose this to vertex v. If it can be the best offer the economy 
has number that everybody keeps track of the best offer that they have 
 
222 00:34:32.100 --> 00:34:40.680 
Alex Pothen: And if we can propose and you can be the best offer that we have, then it goes out 
and announce any previous offer that the house. So we are willing. Now to make proposals. 
 
223 00:34:40.980 --> 00:34:47.100 
Alex Pothen: And undo proposals. I know. So we are willing to do work and then say okay this 
work isn't going anywhere. I will take that back. 
 
224 00:34:47.460 --> 00:34:56.160 
Alex Pothen: You know, so on. So, this is this is a big difference between, say, for example, or 
pending pathway to increasing path algorithm for someone that you're not willing to undo 
things 
 
225 00:34:56.580 --> 00:35:02.820 
Alex Pothen: In general, definitely for building class you're not willing to undo things right 
human and do a matching edge and make a non matching edge. 
 
226 00:35:03.120 --> 00:35:08.730 
Alex Pothen: But in the worst way to match in case, for example, will always make it, make it 
that the very simple always to match. Okay. 
 
227 00:35:09.300 --> 00:35:18.090 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

24 

Alex Pothen: All right. And when there's an edge in the matching well when when it, when the 
endpoints of an of an edge proposed to each other. Good. That then it's a matching right 
 
228 00:35:18.570 --> 00:35:23.460 
Alex Pothen: And it turns out that you can show the expected number of proposals, it's not the 
largest order and law again. 
 
229 00:35:23.820 --> 00:35:35.040 
Alex Pothen: For complete by paragraphs. When the edge rates are chosen uniformly at 
random. Of course, you can choose it waits in such a way that the number of proposals this 
order n squared. You can you can make it back. Okay. 
 
230 00:35:35.610 --> 00:35:38.130 
Alex Pothen: But thankfully doesn't happen very often. Right, so 
 
231 00:35:38.970 --> 00:35:46.590 
Alex Pothen: And the other thing you can prove is that the the sort of algorithm which is based 
on making proposals in fact computer same matching 
 
232 00:35:46.860 --> 00:35:52.080 
Alex Pothen: That the greedy algorithm funds, right. So I'm saying it gives you the same 
approximation ratio of a half 
 
233 00:35:52.560 --> 00:36:00.630 
Alex Pothen: But more than that, I'm saying. In fact, if you wait if you break ties in the same 
order in both algorithms, you'll give you exactly the matching that the greedy algorithm will find 
 
234 00:36:00.990 --> 00:36:07.920 
Alex Pothen: So you lose nothing by by doing going to this proposal based scheme, other than 
the fact that we may have to undo some work. 
 
235 00:36:09.420 --> 00:36:17.100 
Alex Pothen: Okay, so here's a picture just to make all of that a little, little clearer here you 
know we three has already proposed to be to 
 
236 00:36:17.640 --> 00:36:27.240 
Alex Pothen: With its way to. And so that's a way to can offer. So the best offer that we to have 
this now to and we want looks at its neighbors and says, okay, I can offer three to be too. 
 
237 00:36:27.780 --> 00:36:33.660 
Alex Pothen: And I can offer want to be you. And therefore, I have to offer you know to be to 
first and then it looks at this week that 
 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

25 

238 00:36:34.110 --> 00:36:45.690 
Alex Pothen: We three has already offered and just, I can beat that. So it goes ahead and 
remove that. And so we three now has to go find another proposal and then we want goes 
ahead and proposes to to be to right 
 
239 00:36:46.560 --> 00:36:53.820 
Alex Pothen: Here's a different situation where we three has weighed three and so it already 
has offered that wait to to be to 
 
240 00:36:54.660 --> 00:37:03.630 
Alex Pothen: And then we went goes themselves. Okay, what's the best I can offer be too. But 
that's too well. Okay, that's not going to be that. So there's no point in making the proposal, our 
projected 
 
241 00:37:03.960 --> 00:37:18.360 
Alex Pothen: I might as well go ahead and propose to you know the next the next one in my, in 
my ranked list of neighbors. Right. So, so that's a very simple picture of the algorithm, you 
know, just to show you what happens in this algorithm. 
 
242 00:37:19.410 --> 00:37:27.180 
Alex Pothen: It turns out that this can be implemented in Palo clearly because here you know 
any vortex can make proposals, they all they have to do is to just make sure that they 
 
243 00:37:27.690 --> 00:37:33.780 
Alex Pothen: May proposals and rank order the neighbors. That's really all they have to do, but 
they can go ahead and propose as much as you want. 
 
244 00:37:34.140 --> 00:37:43.770 
Alex Pothen: And so here is some some results on the, on the, for the for the beach or the 
algorithm for the be matching case and somebody had asked me about how many cores with 
16,000 
 
245 00:37:44.250 --> 00:37:50.400 
Alex Pothen: Cores on this machine. This is the graph would say you know hundred million 
edges and a billion. 
 
246 00:37:51.150 --> 00:37:56.220 
Alex Pothen: You know, one or 2 billion edges and 100 million vertices and a few hundred 
million vertices and 
 
247 00:37:56.580 --> 00:38:12.150 
Alex Pothen: You know wanted 2 billion edges and and this is a strong scaling. So I'm not 
making the problem any larger, you know, I'm just solving this problem. Same problem with 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

26 

from 256 to 16,000 times course and these are sort of synthetic problems which I can make 
arbitrarily large for this. 
 
248 00:38:13.440 --> 00:38:21.090 
Alex Pothen: To the sort of chess. And you can see that I'm getting fairly good speed up strong, 
strong scale. And so, you know, it turns out that 
 
249 00:38:21.750 --> 00:38:27.270 
Alex Pothen: This can be implemented officially in power. Now there's quite a bit of work here 
in terms of implementing it efficiently in parallel. 
 
250 00:38:27.780 --> 00:38:36.300 
Alex Pothen: But, you know, I'm not going to go into that. Because clearly, I don't have time 
already almost out of time already. Let me quickly see a couple more things and then I'll 
conclude 
 
251 00:38:37.200 --> 00:38:43.380 
Alex Pothen: So it turns out that you can extend what we have done to some modular metrics. 
So in a sub modular function. 
 
252 00:38:43.920 --> 00:38:52.200 
Alex Pothen: You're not now something the weeds but instead. For example, you might be 
taking the square root. So the weights or something like that. Right. And so this is kind of like a 
discrete derivative 
 
253 00:38:52.620 --> 00:39:07.140 
Alex Pothen: offset by one along and element. He and so this dispute derivative is larger than 
this script derivative for a set it to for the same element. He where I do is bigger than one. So 
this is kind of like the law of diminishing returns. Right. 
 
254 00:39:07.950 --> 00:39:15.930 
Alex Pothen: And so in the sub modular function. It turns out that the I said greedy algorithm is 
actually half approximate for maximizing some modular voters were to be managing 
 
255 00:39:16.740 --> 00:39:27.420 
Alex Pothen: And there's a nice application. So this is what we are doing currently so nice 
application that looks at quantum chemistry competitions and power machines where you're 
trying to load balancer competitions that are needed. Okay. 
 
256 00:39:28.020 --> 00:39:40.890 
Alex Pothen: And if you have some modular edge way to be matching, then there is no Metroid, 
but there is actually an intersection of two matrix. And therefore, you get a one third 
approximation algorithm and it helps you compete, what I call diverse matching. So, 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

27 

 
257 00:39:43.410 --> 00:39:53.580 
Alex Pothen: Okay, here's another problem we've actually done some work we have worked on 
minimum wage VHF our problems. So you can think of these as the complement of a beat 
matching 
 
258 00:39:53.940 --> 00:40:08.040 
Alex Pothen: So here we have again BV is given to us for each word tax and we have the 
constraint that at least be the edges answer, not on V. So it's not at most BV as it wasn't be 
matching, but it's at least BV 
 
259 00:40:09.120 --> 00:40:16.050 
Alex Pothen: As Andy said color problem. In fact, you know, these green edges actually go 
create what is called a one edge cover in this in this trauma. 
 
260 00:40:16.680 --> 00:40:31.500 
Alex Pothen: And it turns out that this is a problem that's very rich and academic paradox, a 
solution. So there's a greedy algorithm. Their primal dual approximation algorithms that 
reductions to matching even the well known nearest neighbor graph construction and factors 
to approximation for ok 
 
261 00:40:32.610 --> 00:40:37.050 
Alex Pothen: We have designed several algorithms here and putting primordial evidence has 
approximate memberships, we have 
 
262 00:40:37.590 --> 00:40:44.370 
Alex Pothen: And we have implemented them on shared memory machines for getting scalable 
parallel algorithms of disparate memory machines. 
 
263 00:40:44.940 --> 00:40:52.710 
Alex Pothen: We have actually done one of these productions to matching. And that gives us a 
to approximation. In fact, we have used to be sued algorithm that I just talked to you about 
 
264 00:40:53.310 --> 00:40:59.640 
Alex Pothen: For this for this problem and we have also use it to solve a problem and data 
privacy called adaptive anonymity problem. 
 
265 00:41:00.990 --> 00:41:03.960 
Alex Pothen: Okay, so let me let me conclude my time is getting 
 
266 00:41:05.130 --> 00:41:12.510 
Alex Pothen: Near the end at the end. So we've designed several approximation algorithms will 
what we call degree constraints of problems. 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

28 

 
267 00:41:12.990 --> 00:41:17.940 
Alex Pothen: We have seen several different design paradigm to extend the greedy our 
paradigm using augmentation based 
 
268 00:41:18.390 --> 00:41:28.050 
Alex Pothen: On algorithms. We've seen proposal based algorithms. We've seen the primal duel 
with them and so on. When I said we have seen that at least mentioned, I might have discussed 
a few of them in detail. 
 
269 00:41:29.250 --> 00:41:41.550 
Alex Pothen: And it turns out that algorithms with constant worst case approximate ratios yield 
nearly optimal solutions fast because he's done near linear time complexity algorithms on both 
cereal and politicians. 
 
270 00:41:42.240 --> 00:41:45.690 
Alex Pothen: And some of these outlets, not all, but some of them are scalable. 
 
271 00:41:46.110 --> 00:41:51.870 
Alex Pothen: And can be implemented on this pyramid many machines with 10 cake or some 
more intact, you know, we'd love to get more course we can. 
 
272 00:41:52.170 --> 00:41:59.010 
Alex Pothen: Run them on even larger numbers of course it's not easy to get these large, large 
number of course on the distribute from the do a machine. OK. 
 
273 00:41:59.580 --> 00:42:09.060 
Alex Pothen: So we also looked at the number of applications. So this is a problem that we have 
not looked at, but a lot of people have. So this is one of the reasons why Botox waited matching 
is this of interest. 
 
274 00:42:09.360 --> 00:42:17.640 
Alex Pothen: Because it arises in Internet advertising problem. And in fact, a lot of work has 
been done on this problem variant of MBM for 
 
275 00:42:18.270 --> 00:42:25.260 
Alex Pothen: For the internet advertising problem. It's called the AdWords problem. And people 
have looked at online algorithms and screaming at someone 
 
276 00:42:26.130 --> 00:42:37.380 
Alex Pothen: For adaptive anonymity. We have actually sold an instance with nearly three 
quarter million individuals and 500 features in a few minutes are using about 10,000 cores on a 
on a power machine. 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

29 

 
277 00:42:38.250 --> 00:42:54.870 
Alex Pothen: We're also working on using this for graph construction of class classification for 
semi supervised classification problems we have used be matching for network alignment 
problems. And then I talked to you about using sub modular be matching for load balancing 
problems. 
 
278 00:42:56.400 --> 00:43:05.880 
Alex Pothen: Okay, so, you know, clearly, my goal is to try to get you to read a little bit more. If 
you're interested in knowing more about these these topics. 
 
279 00:43:06.300 --> 00:43:15.720 
Alex Pothen: We have written a survey article on this on that appeared in afternoon America in 
2019 so it's a 90 page paper. We don't just survey our work with survey. In fact, 
 
280 00:43:16.470 --> 00:43:23.670 
Alex Pothen: The whole area. So in terms of matching problems a cardinal the matching 
different kinds of weighted matching and so on an edge cover problems. 
 
281 00:43:24.000 --> 00:43:35.190 
Alex Pothen: And, you know, so we look at in fact problems, some comments or scientific 
computing. That's a 90 page article that that service to the field data. It also points you to 
software and also points you to two 
 
282 00:43:36.030 --> 00:43:42.270 
Alex Pothen: Papers and and software that V and other other groups have done so here again. I 
mean, I won't go through these papers, but you know 
 
283 00:43:42.690 --> 00:43:50.910 
Alex Pothen: This this slides will be available to those of you who want to look at it more. So our 
point you that there are papers, but also there is a software library that you could use. 
 
284 00:43:51.600 --> 00:43:58.320 
Alex Pothen: Number of people that we have worked with on a number of problems on this. I 
just want to highlight two people so amor that hurts is the one who 
 
285 00:43:58.710 --> 00:44:07.260 
Alex Pothen: PhD student who finished a year ago. He looked on vertex really matching 
problems and he is now a professor of computer science at 
 
286 00:44:07.890 --> 00:44:19.500 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

30 

Alex Pothen: KING five University in Saudi Arabia is from or you've worked on be matching 
problems and productive anonymity problems and he is now a staff scientists at Pacific 
Northwest National Lab. 
 
287 00:44:20.160 --> 00:44:28.020 
Alex Pothen: And for those is a current student working on his Ph. D. Expected to finish in a year 
or two, and he's working on BH cover and some modular matching problems. 
 
288 00:44:28.770 --> 00:44:36.180 
Alex Pothen: Okay, let me finish by saying that, you know, Julian had said something about this 
activity groups. I'm activity group. 
 
289 00:44:37.050 --> 00:44:49.980 
Alex Pothen: So for those of you who are interested in implementing and applying discrete 
algorithms to particular problems of interest, you know, this is a great community to belong to 
 
290 00:44:50.640 --> 00:44:55.080 
Alex Pothen: There's a conference, the inaugural conference is going to be held in July 2021 
 
291 00:44:56.040 --> 00:45:06.450 
Alex Pothen: With sign annual meeting. And if you go to that website you can get more 
information about it like it's sort of a hybrid kind of meeting with both refereed proceedings 
and also 
 
292 00:45:07.170 --> 00:45:13.800 
Alex Pothen: Talks selected from excellent abstract so you can submit a paper and the paper 
will be reviewed and then they'll be published proceedings. 
 
293 00:45:14.340 --> 00:45:21.660 
Alex Pothen: And then, but also, you know, the sign model is essentially to have more talks with 
excellent abstracts. So it's a hybrid model that will combines combines both 
 
294 00:45:22.470 --> 00:45:30.600 
Alex Pothen: And it turns out my term is almost up. So in fact, by the end of this year, I'll be 
there's a lot going on. But again, if you want to know more about it, please go to 
 
295 00:45:31.080 --> 00:45:38.400 
Alex Pothen: You know, just, just go to the site or go to the same site and look at activity 
groups. For those of you who are particularly students. I encourage you to join. 
 
296 00:45:39.060 --> 00:45:47.370 
Alex Pothen: Your membership is free. Essentially, for joining to activity groups. So, but this 
might be a place where you might meet 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

31 

 
297 00:45:48.060 --> 00:45:55.080 
Alex Pothen: Fellow Spirit. Spirit kindred spirits who are interested in the kind of problems that 
you're looking at. We look at different communities. 
 
298 00:45:55.320 --> 00:46:05.400 
Alex Pothen: Coming to a scientific computing power algorithms apply district. Now I will have 
engineering and so on so many, many of these. So this would be a great place for you to publish 
you 
 
299 00:46:06.300 --> 00:46:13.020 
Alex Pothen: So good. Thank you. I will stop here and take any questions. Thank you. Julian and 
thank you all for your patience. 
 
300 00:46:13.410 --> 00:46:24.120 
Julian Shun: Great, thanks a lot. Thanks for the very interesting talk. So we have time for 
questions if anyone has any questions, feel free to speak up. 
 
301 00:46:25.320 --> 00:46:28.410 
Julian Shun: Or you can type on the chat and I can ask for you. 
 
302 00:46:31.980 --> 00:46:34.380 
Julian Shun: Yes, I'll start off with a question that I had 
 
303 00:46:35.400 --> 00:46:51.540 
Julian Shun: And this is about the first part of the talk, you mentioned that you could get a k 
over k plus one approximation where K is the length of the path you were considering I'm 
wondering if you tried to use of k greater than two. 
 
304 00:46:52.830 --> 00:46:57.090 
Alex Pothen: We didn't. And the reason Julian. Is this you, you saw the results that we were like, 
 
305 00:46:57.180 --> 00:47:00.180 
Alex Pothen: 99.99% of optimal 
 
306 00:47:00.360 --> 00:47:09.780 
Alex Pothen: Yeah, so, so it's not clear what you're going to gain by doing it, number one. 
Number two, it makes the algorithms more complicated. You saw that I had this even with two 
thirds, I had this problems with 
 
307 00:47:11.040 --> 00:47:16.530 
Alex Pothen: You know, causing deadlock and so on. So I really had to be very careful in that so 
so as I said, you know, you can 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

32 

 
308 00:47:16.890 --> 00:47:20.850 
Alex Pothen: You know, you can make the algorithms more complex more complicated and 
sophisticated 
 
309 00:47:21.270 --> 00:47:29.460 
Alex Pothen: It just becomes much harder to implement and it's not clear what you gain in 
practice. I mean, you know, if, in fact, you know, I'm not saying that this works for all problems, 
right, I mean, so 
 
310 00:47:29.700 --> 00:47:34.920 
Alex Pothen: I'm sure that there could be problems that you can cook up where the 
approximation gracious are much worse and so on and can 
 
311 00:47:35.640 --> 00:47:44.190 
Alex Pothen: And then in that case, it's definitely worth pursuing. But yeah, so. So the same 
thing with edge weighted matching. There's this one minus epsilon across mission algorithm. 
 
312 00:47:44.760 --> 00:47:54.360 
Alex Pothen: Do to set pity and ran one and it uses sort of scaling to compute compute the 
matching and it has it all the complexity of 
 
313 00:47:55.140 --> 00:48:00.060 
Alex Pothen: An exact matching algorithm, you still have to deal with blossoms and you have to 
process them you have to 
 
314 00:48:00.390 --> 00:48:06.090 
Alex Pothen: dissolve them, you know, you have to update your weights and all of those sort of 
things. And so you notice that when we implemented it. 
 
315 00:48:06.990 --> 00:48:15.570 
Alex Pothen: You know, it was actually slower than the exact. So, so, yeah. So, one of the nice 
things about this proclamation algorithm says that they are 
 
316 00:48:16.020 --> 00:48:29.610 
Alex Pothen: They are fairly simple to to discuss and also to implement and so this is what we 
have done. And then, of course, apparently ism, you do need fairly simple algorithms. So the 
more complicated algorithms, the heartache becomes implement them efficiently in power. 
 
317 00:48:31.470 --> 00:48:32.940 
Julian Shun: Great. Thanks. Hello. 
 
318 00:48:34.380 --> 00:48:36.420 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

33 

Julian Shun: Anyone else have any questions. 
 
319 00:48:43.290 --> 00:48:57.630 
Julian Shun: Yeah. So there's a question from William chat in the chat would locks localization 
strategies for example hardware lock elation in Intel's TS X improve performance or Jesus 
paralyzing 
 
320 00:49:00.330 --> 00:49:05.640 
Alex Pothen: It might be don't know be having tried. We haven't tried it, the students who did 
this work is now gone. 
 
321 00:49:06.090 --> 00:49:12.810 
Alex Pothen: And go you know and so he's still adjusting to his new job to Saudi Arabia. So we 
really haven't pursued things much further. 
 
322 00:49:13.590 --> 00:49:25.560 
Alex Pothen: I'm pretty sure that that you know better synchronization methodologies and 
mechanisms will definitely improve performance, that's for sure. But we haven't we haven't 
tried anything beyond 
 
323 00:49:26.580 --> 00:49:31.260 
Alex Pothen: You know, just, just a sort of locks available in open MP until 
 
324 00:49:33.330 --> 00:49:34.770 
Julian Shun: Great, thanks. 
 
325 00:49:37.680 --> 00:49:52.200 
Julian Shun: I was actually wondering like how much theory and sister between different runs 
of the like to be suitor algorithms that you were describing since I noticed that it is, it might be 
non deterministic based on like what order the vertex proposes. 
 
326 00:49:54.090 --> 00:49:59.070 
Alex Pothen: Yeah, so again for knowledge problems for very large problems. 
 
327 00:50:01.110 --> 00:50:07.230 
Alex Pothen: We haven't seen much of a variance for small problems, maybe, you know, it 
might, it might be because 
 
328 00:50:07.950 --> 00:50:14.010 
Alex Pothen: You know, because of the, the total amount of work that you need to do. I mean, 
so, so these algorithms are not really 
 
329 00:50:14.850 --> 00:50:24.810 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

34 

Alex Pothen: Bound so much. Bye bye. The competition there they're bound much more by 
memory access and you know synchronization and things like that so 
 
330 00:50:25.560 --> 00:50:40.260 
Alex Pothen: So yeah, we haven't seen too much variation we have tried petitioning the 
vertices, you know, randomly randomly reordering the vertices and things like that. We haven't 
we haven't seen much variation 
 
331 00:50:41.310 --> 00:50:46.530 
Alex Pothen: But again, it could be because we have large problems, there's a fair amount of 
work to do and 
 
332 00:50:47.430 --> 00:50:52.080 
Alex Pothen: And and then, you know, so I didn't talk to you about, you know what, what we 
did to make this 
 
333 00:50:52.530 --> 00:50:59.430 
Alex Pothen: Algorithm scalable, you know, and so on. So, so, in fact, you know, you have to do. 
Super steps you have to organize your algorithms into sort of steps. 
 
334 00:50:59.760 --> 00:51:09.870 
Alex Pothen: And then you have to choose a careful granularity. How much do you 
communicate how often do you communicate courses computer. So you have to set that know 
fairly well and then 
 
335 00:51:10.740 --> 00:51:16.260 
Alex Pothen: And then you have to do. We do essentially a synchronous super steps. So 
effectively you know there's there's a lot of 
 
336 00:51:16.590 --> 00:51:22.110 
Alex Pothen: Because it's a piece of the algorithm, you know, the algorithm, you know, it might 
just end up doing more work. If you are really bad. 
 
337 00:51:22.440 --> 00:51:27.660 
Alex Pothen: About how you, how you use in synchrony. So you know that that's the worst 
thing that can happen to you, but 
 
338 00:51:27.930 --> 00:51:35.040 
Alex Pothen: The algorithm is going to be correct, because in fact the title algorithm is going to 
compute exactly the same matching that the serial algorithm would compete with also 
 
339 00:51:35.580 --> 00:51:45.900 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

35 

Alex Pothen: And so because there's an underlying invariant that the algorithm has to satisfy 
right and so on. So we really haven't seen very much variability and Julian, but 
 
340 00:51:46.440 --> 00:51:55.950 
Alex Pothen: But again, that's not to say that can happen. It's just the fact that, you know, the 
we do these very large runs on fairly, you know, smaller sets of problems and 
 
341 00:51:56.310 --> 00:52:02.640 
Alex Pothen: You know, we don't get a huge amount of time on these machines and so on. So it 
could be the fact that, you know, if he if he had more 
 
342 00:52:03.630 --> 00:52:11.640 
Alex Pothen: You know, more sort of opportunities to expand maybe might actually see them 
but unchecked memory machines for sure, not because we have access to a lot of shared 
memory machines. 
 
343 00:52:12.210 --> 00:52:25.680 
Alex Pothen: You know what would say, you know, we've even run them on on IBM machines 
with several hundred course so like I don't know 700, of course, or 800 course or something. 
And we really haven't seen very much very much variance here. 
 
344 00:52:27.420 --> 00:52:30.090 
Julian Shun: Okay, great. Yeah, thanks. Thanks for letting me know. 
 
345 00:52:34.650 --> 00:52:36.300 
Julian Shun: Anyone else have questions. 
 
346 00:52:40.620 --> 00:52:43.890 
Alex Pothen: Maybe I'll just stop stop sharing 
 
347 00:52:46.950 --> 00:52:48.930 
Alex Pothen: And maybe you can see at least my picture. 
 
348 00:52:49.770 --> 00:52:50.640 
Yeah. 
 
349 00:52:51.720 --> 00:52:52.320 
Alex Pothen: Yeah, sorry. 
 
350 00:52:53.130 --> 00:52:53.400 
Julian Shun: I don't 
 
351 00:52:54.420 --> 00:53:08.610 



MIT CSAIL FastCode Seminar 10/26/2020: Alex Pothen 
 
 

36 

Julian Shun: Know, yeah. I actually had another question. So I'm wondering if if these 
algorithms like warfare. It's a piece out for this would work for solving matching problems on 
Hyper grouse you've ever looked into that. 
 
352 00:53:09.720 --> 00:53:23.760 
Alex Pothen: So I haven't looked at hyper graph matching problems, but I have a colleague of 
some statistics. Actually, that was defended a few weeks ago at the University of Leo and so 
 
353 00:53:25.650 --> 00:53:26.250 
Alex Pothen: His name is 
 
354 00:53:27.300 --> 00:53:30.570 
Alex Pothen: My colleague name is Bo char and his student is 
 
355 00:53:32.580 --> 00:53:45.630 
Alex Pothen: I know God. I saw the youngest managers that that's his name. So, and, and he he 
has looked at some very simple. So these are essentially uniform 
 
356 00:53:46.050 --> 00:53:59.310 
Alex Pothen: Hyper graphs, you know, things like that. So he has looked at some some matching 
problems in that context. But, but, yeah, I mean, so definitely some of these ideas can be used 
in those contexts. But of course, this problem. So it'd be hard. 
 
357 00:54:00.330 --> 00:54:05.160 
Alex Pothen: Or intractable. And so, you know what, it's not clear what kind of approximation 
of someone can you 
 
358 00:54:06.450 --> 00:54:08.670 
Julian Shun: Yeah. Great. Great. Thanks a lot. 
 
359 00:54:11.460 --> 00:54:11.820 
Julian Shun: Okay. 
 
360 00:54:14.220 --> 00:54:35.460 
Julian Shun: Yeah. So it seems like no one has a question right now, but we'll, we'll leave the 
zoom room open. If anyone thinks have any questions or anyone just wants to chat I I know 
Jeremy wanted the chat sees here. So yeah, well let's let's think Alex again for the very great 
talk. 
 
361 00:54:36.930 --> 00:54:37.740 
Alex Pothen: Thank you very much. 
 


