High Performance
Graph Mining Systems

Xuehai Qian
University of Southern California

' . .
= USCUI]IVCI'SI‘L’_Y of rchitecture Lab for Creative High-performance

S()uthern California nergy-efficient Machines alchem.usc.edu

http://alchem.usc.edu

Graphs are Everywhere

e A graph G = (V,E) is represented by its vertices set and edges set E:

® E is a subset of VXV, (u,v) € E iff u and v are connected by an
edge

® Graphs naturally capture the relationship between entities in
different applications

Coexpression networks
[Magwene et al. (2004)]

% LI Social networks
Foenl g [Grandjean, M. (2016)]

ﬁ?ﬁ High Performance Graph Mining Systems 2 alchem.usc.edu

http://alchem.usc.edu

Graph Mining

e Two graphs G, = (V,, E,) and G, = (V,E,) are isomorphic
iff there exists an one-to-one mapping f: V, — V, such
that (u,v) € E, © (f(w), f(v)) € E,

® An equivalent relation
e Graph mining: find patterns from a graph
e Input: a large input graph; a pattern graph

e Compute: enumerate all the subgraphs isomorphic to
the given pattern—embeddings

® Process: gather some information, depending on the
application

e \We consider two main types:
e Counting: simply return the count of embeddings
e Frequent subgraph mining (FSM)

High Performance Graph Mining Systems 3 alchem.usc.edu

http://alchem.usc.edu

Edge/Vertex-induced Subgraphs

e Edge-induced subgraph
e For two graphs ¢ = (V,.E), G = (V,E)
such that V, C V.E, C E

e Consider edges: u,ve g, (u,v) € G, but

(u,v) € g—Uu and v are in g due to other
edges

e \ertex-induced Subgraph Edge-induced subgraph
° For two graphs g = (Vg,E), G = (V, E) Not vertex-induced subgraph
such that {(u,v)|u,ve V,, (u,v) € E} = E,
e Consider vertices: if two vertices u

and v are in g, and there is an edge

between then in G, the edge must be Egdge-induced subgraph
also in g Vertex-induced subgraph

Graph G

ﬁiﬁﬁ High Performance Graph Mining Systems 4 alehem.usc.edu

http://alchem.usc.edu

Edge/Vertex-induced Embeddings
e Vertex-induced embedding Graph G Q
@ The subgraph that is isomorphic to
a pattern should be a valid vertex-
induced subgraph &9
e The count be calculated from a>° 0\f
o,

edge-induced embedding count
e Example: C(vertex-induced 3-
chain) =C(edge-induced 3-
chain)-3C(edge-induced triangle). edge-induced
C=count 3-chains
® The #of vertex-induced count of

3-chain of G (on the
right)=8-3x2=2 &0 0\/9/9
Triangles

ﬁ?ﬁ High Performance Graph Mining Systems

alchem.usc.edu

http://alchem.usc.edu

Edge/Vertex-induced Embeddings

e For the vertex-set-based method (used in AutoMine*),
the edge-induced embedding can be calculated with
minor code modification

1: forvgp eV do

2. forv; € N(vp) do

3: for v, € N(V()) - N(V]) do

4: COUNLyertex—induced <~ COUNLyortex—induced —+ I

5 end for N(v): the vertex set containing all neighbors of v

6: end for -N(v1): v2 should not connect to vi, otherwise it is

7: end for triangle in the original graph—the 3-chain is not a valid
Vertex-induced 3-chain vertex-induced subgraph

1: forvgp €V do

2. forv,; € N(v) do

3 for v, € N(vp) do

4: COUNLedge—induced < COUNIedge—induced I

5 end for Remove -N(v1): cover both cases

6 end for

7: end for

Edge-induced 3-chain
e In the talk, we consider edge-induced embeddings

* Daniel Manwhirter, et al. AutoMine: harmonizing high-level abstraction and high performance for graph mining. SOSP’19
S

ﬁiﬁﬁ High Performance Graph Mining Systems 6 alchem usc.edu

http://alchem.usc.edu

Graph Mining Applications

e Mining biochemical structures

e Finding biological conserved subnetworks
e Finding functional modules

e Program control flow analysis

e Intrusion network analysis

e Mining communication networks

e Anomaly detection

® Mining XML structures

e Building blocks for graph classification, clustering,
compression, comparison, correlation analysis, and
indexing

High Performance Graph Mining Systems 7 alchem.usc.edu

http://alchem.usc.edu

Graph Mining Systems
e While it is important, it is hard to write graph mining codes
for various applications
e Different patterns leads to different algorithms

® The same algorithm can be implemented in various ways
with different performance

® A general graph mining system can offer better
programmability and high performance

e Users simply specify the patterns
® The system chooses the best implementations

® A typical domain-specific system with similar motivation as
graph processing systems

e Graph mining vs. graph computation
e Graph computation: simple computation, memory bound
e Graph mining: computational intensive

High Performance Graph Mining Systems 8 alchem.usc.edu

http://alchem.usc.edu

Existing Graph Mining Systems

® Single-machine systems
e RStream (OSDI'18)
e AutoMine (SOSP’19)
® Peregrine (EuroSys’20)
e Pangolin (VLDB'20)
e Kaleido (ICDE'20)

e Distributed systems
e Arabesque (SOSP’15)
® G-Miner (Eurosys’18), G-Thinker (ICDE'20)
e Fractal (SIGMOD’19)
e GraphPi (SC’'20)

High Performance Graph Mining Systems 9 alchem.usc.edu

http://alchem.usc.edu

Arabesque: Exhaustive Check

Step i Node0 Node 1 : Node 2
i a
I [l
Size-i Embedding | Size-i Embedding | Size-i Embedding
Candidates part0 ;, Candidatespart1 , Candidates part 2
i il
Extend by one : :
edge/vertex i I
i [l
Size-(i+1) 1 Size-(i+1) 0 Size-(i+1)
Embedding I Embedding ! Embedding
- i . [.
Eiltor and Candidates part 0 : Candidates part 1 : Candidates part 2
process * . * I *

Shuffle across all nodes for load balancing

Step i+1

Teixeira et al. Arabesque: A System for Distributed Graph Mining. SOSP’15
S

ﬁﬁﬁ High Performance Graph Mining Systems

10 alchem.usc.edu

http://alchem.usc.edu

RStream: Leveraging Relational Algebra

Disk

barons Vertexsetva parion; Vertexsetvi boriton | Vertexsetvk
Edge Table Update Edge Table Update Edge Table Update
Partition 1 Table #j eee Partition i Table #j S8 Partition K Table #j
(Edges Partition 1 (Edges Partition i (Edges Partition K
starting (embedding starting (embedding starting (embedding
from VI) nndldates) from Vi) candidates) from Vi) candidates)
— — — S
Loaded Strea med Loaded ‘ ’ Streamed Loaded ‘ ‘ Streamed
in
memory from disk memory from disk memory from disk
Update 1:3!"‘" #(j+1) Update Table #(j+1) Update Table #(j+1)
Partition1 o Partition 1 o Partition 1
(embedding candidates) (embedding candidates) (embedding candidates)

Pad ot Pad

Shuffling the Update Table Partitions
Disk

Streamin Streamin Streamin
Partitiongl e Par‘titionig Vertex Set Vi Partition?(LS
Edge Table Update Edge Table Update Edge Table Update
Partition 1 Table #(j+1) see Partition i Table #(j+1) eee Partition K Table #(j+1)
(Edges Partition 1 (Edges Partition i (Edges Partition K
starting (embedding starting (embedding starting (embedding
from Vi) candidates) from Vi) candidates) from Vi) candidates)

Wang et al. RStream: Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine. OSDI’18

High Performance Graph Mining Systems

11 alchem.usc.edu

http://alchem.usc.edu

AutoMine: Compiler-generated
Pattern Enumeration using Cost Model

. for vy € Vﬁ do
for vi € N(vy) do
for vy e N(vo)NN(v;) do ’0

L en " Different Embedding : Estimated .

g E EEEEEEEEEEEEEENEEEEEEEEEENEENEEEEEEEEEENEEEENEEEEN
“ "a,

2
('()ll/”r(,,hr‘[triangle A fn“’”{ui’nf triangle + l . n .
™ .
! E tion Method: Cost :
> forvs €Nivo) do . numeration ivietnoa: OS :
3 for v € N(vg) N N(vy) do - : ™
& forvs € N()\N()NN(v2) do . . -
5: County—cligue $— counly_ jique + I for v_1 in nbrs(v 0): []
| - - n
- for v_2 in nbrs(v_0): ||[| cost: XXX ™
n for v_3 in intersect(nbrs(v_0), nbrs(v_1)):]
Pattern : = . .
n
_ . .
|
n
|
n
fozgfs_lniz:nurs(v_o;; C . YYY M' - .
for v_.2 in intersect(nbrs(v_0), nbrs(v_1)): ost. lnlmum u
for v_3 in nbrs(v_0): - |
4+ cnt;s .
L © n -
n = n
- .
= see [
| a [X N] L
|
1: for vo €V do : for v_0 in V: u]
2 for v, € N(vp) do n for v_1 in nbrs(v_0): -]
3 fOl‘ V2 € A,(\"()) ﬂ}V(\‘I) d()] for v_2 in intersect(nbrs(v_0), nbrs(v_1)): || Cost: Zzz |
4 for v3 € N(vo) NN(vi) N N(v2) do : f°j}V—3ti" nbra(v_2): - :
cnt;
5: COUNLY—clique < COUNtY_cligue T 1 - u -
6 end for .--.....-..............-....--.............-......-....-l.
7 for v € N(vg) do u :
n
8: countyailed triangle € Countygiled triangle +1 n]
9: end for n [
10: end for u :
11: end for . G d c I I H
. enerated C++ Implementation .
12: end for . !
g 4
’0 ‘0
Computation Reuse ‘% .*

..lllIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“

Mawhirter et al. AutoMine: Harmonizing High-level Abstraction and High Performance for Graph Mining. SOSP’19

High Performance Graph Mining Systems

12 alchem.usc.edu

http://alchem.usc.edu

Peregrine: Complete Symmetry Breaking

A Symmetric Pattern

The four embeddings
are redundant:
(vO,v1,v2,v3)
(v2,v1,v0,v3)
(v2,v3,v0,vl)
(vO,v3,v2,vl)

-=» should be only counted

once

Symmetry breaking:
add constraints—
(vO<v2) and (vli<v3)

-=» only one embedding left

Pattern Analysis

Jamshidi et al. Peregrine: A Pattern-Aware Graph Mining System. EuroSys’20

I n p Ut OPatterr21 Symmetry
Breaking
Data \3/ 1§ 7 | " Restrictions
Graph ™
p Pattern \/
— Matching Plan
B A\
- P
Output (e.g.
Pattern Count,
Pattern Matching Pattern
D Support)
High Performance Graph Mining Systems 13 alchem.usc.edu

http://alchem.usc.edu

Pangolin: Application-specific Optimizations
with flexible APIs

Pangolin Applications
(TC, CF, MC, FSM ...)

Pangolin API

Execution Helper Embedding List
Engine Routines | Data Structure

Galois System

Multicore CPU

GPU

I bool toExtend (Embedding emb, Vertex v);

= W N

o]

bool toAdd (Embedding emb, Vertex u)
bool toAdd (Embedding emb, Edge e)
Pattern getPattern (Embedding emb)
Pattern getCanonicalPattern (Pattern pt)

6 Support getSupport (Embedding emb)
7 Support Aggregate (Support sl, Support s2)
8 bool toPrune (Embedding emb) ;

Chen et al. Pangolin: An Efficient and Flexible Graph Mining System on CPU and GPU. VLDB’20

\
Se=

ﬁﬁﬁ High Performance Graph Mining Systems

14

alchem.usc.edu

http://alchem.usc.edu

GraphPi: Choose the Best Symmetry
Breaking

Configuration Generation Performance Prediction Code Generation and Compilation 7 Distributed Pattern Matching
Pattern Q - /A\\/ /h\y N\

' . ' ‘ 3 = \‘/ / \\ .
€ 0 ® Oa® i i /" '\ Cluster N Embedding (3) (6)
LN e , ! Optimal / \'\\ Listing
__)[Reétrlctlotn Set 6 3@3 3 Conﬁgummn 3 f 630 030
! enerator : ‘ :
©-©® 990 O 1 | D-©®© OO
\ :

Embedding
Counting

Graph | ! 9P | @9@ Efficient

rap ; e § j icien Complle

D-0 || (£9) ___,[Perlt\'::l:::nce C++ Executable
-~ @8@ 3 _Code =
* OO | | \

S0
@Q—® | D
N : Schedule ' =~
@~0 : Generator @ ®.®
® O

Count = 2

e Introduced the restriction set generator
e Systematically explore various symmetry breaking restrictions

e Eliminate all redundant computation due to symmetry

® Replicated distributed execution

e If the innermost K for-loops are independent, the count is
calculated mathematically

Shi et al. GraphPi: High Performance Graph Pattern Matching through Effective Redundancy Elimination. SC’20

e
ﬁiﬁﬁ High Performance Graph Mining Systems 15 alchem.usc.edu

http://alchem.usc.edu

Existing Graph Mining Systems
® Single-machine systems
e RStream (OSDI'18):
e Relational algebra based API and implementation
e AutoMine (SOSP’19):
e Compiler generated algorithms for pattern enumeration
e Peregrine (EuroSys’20):
e Pattern-based programming model enabling pattern-aware optimization
e Pangolin (VLDB"20):
e A set of flexible APIs enables powerful pattern-specific optimizations
e The first graph mining system supporting GPU
e Kaleido (ICDE'20):
e Succinct intermediate data representation && faster isomorphism test
® Distributed systems
e Arabesque (SOSP’15):
e Exhaustively check all subgraphs up to the pattern size
e G-Miner (Eurosys’18), G-Thinker (ICDE'20)
e® Subgraph-centric programming model with partitioned graph
e Fractal (SIGMOD'19):

e DFS-based embedding exploration; build-from-scratch paradigm to reduce memory
footprint

e GraphPi (SC"20):
e Search for better symmetry breaking; an mathematical method to speedup counting

High Performance Graph Mining Systems

16 alchem.usc.edu

http://alchem.usc.edu

Further Improving Performance?

e Observation: all existing systems consider each
given pattern as a while

e Empirically, the embedding enumeration cost
can increase rapidly as the pattern size grows _ chain counting Clique counting

B
e We build a new graph mining system based on g -
pattern decomposition* =
. =

® Decompose a target pattern into several o . e

Chain size Clique size

smaller subpatterns o _
Execution time of AutoMine
e Compute the count of each (our own implementation) on

. EmailEuCore graph. 6-chain
® The results of the target (original pattern) can embeddings is 19 620% compared

be calculated using the subpattern counts to 3-chain enumeration
with very low additional cost

e Our project started in Fall 2019, many new
papers came out in 2020, but fortunately our

performance is still better than all
@ The importance of algorithm

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17

Sz
ﬁiﬁ” High Performance Graph Mining Systems 17 alehem.usc.edu

http://alchem.usc.edu

Counting with Pattern Decomposition

e We explain the algorithm using relational algebra as a mathematical tool
e The implementation still uses vertex-set-based method

e A pattern decomposition of pattern graph p = (V,,E,) is determined by the vertex
cutting set V.

e A subset of V, of which the removal breaks p into K connected components
e An edge-induced embedding of p can be represented by a |V, |-tuple
(Vos Vs Vas + 5 | V| = 1)
e v, is the vertex in the embedding (subgraph) that matches the vertex i in
the pattern graph
e Each unique embedding corresponds to M tuples due to symmetric
e We can organize such tuples in a conceptual embedding table

. Cutting set vertices (0, 1, 2) Subpatterns

' Other vertices (3, 4)

(b,a,c,d,f): duplicated tuple

Original Pattern 1/
MD&:::E:UM (a,b,c,f,d): a tuple for an embedding of p

Input graph

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17
S

?iﬁﬁ High Performance Graph Mining Systems

18 alchem.usc.edu

http://alchem.usc.edu

Counting with Pattern Decomposition

e The K subpatterns correspond to K embedding tables:
I, 15, ..., T

e T, ,: relational join of all T}, T, ..., Ty using the columns
associated with the cutting set V. as keys

e Contains all edge-induced embeddings of the original
pattern p

e However, Ty,, contains more tuples for two reasons:

® Symmetric: different tuples represent the same
embedding—valid embeddings counted multiple times

® Duplicated elements: embeddings matching the
subpatterns contain one or more same vertices other
than for cutting sets—invalid embeddings

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17
S

ﬁiﬁﬁ High Performance Graph Mining Systems 19 alchem.usc.edu

http://alchem.usc.edu

Embedding Tables

‘ Cutting set vertices (0, 1, 2) Subpatterns

. Other vertices (3, 4)
P1

Original Pattern p

Pattern
Decomposmon

Input graph

e However, Ty,, contains more tuples for
two reasons:

® Symmetric: different tuples
represent the same embedding—
valid embeddings counted multiple
times

e Duplicated element: embeddings
matching the subpatterns contain
the same vertices other than for
cutting sets—invalid embeddings

® How to eliminate them?

(I
N=Z

ﬁﬁﬁ High Performance Graph Mining Systems

T, T, T3
Vg V1 V2 V3 Vo V4 Vp Vg Vo V1 Vo V3 Vg4
abg f b agf abgf d
agbf gab f abg f c
a b gec b agc abgocd
agboc g abc abgecoc
acb f c ab f abc fg
a boc f b ac f abec fod
acbog c abg abcgog
abcg b acg abcgd
b gad g b ad b agd f
b a g d abgd b agdoc
b g a c g b ac b agec f
b agc abgc b agococ
b acg abcg b acg f
b c ag c bag b acgg
b acd a bcd b acd f
b ¢c a d c b ad b acdg

20 alchem.usc.edu

http://alchem.usc.edu

Shrinkage Pattern

® Generated by shrinking at least two vertices in pattern graph p
belonging to different subpatterns

e Specifically construct the patterns that contain duplicated
elements

® It is proved that this method can eliminate all invalid tuples*®

e After eliminating embeddings matching shrinkage patterns (invalid),
handling duplicate tuples (valid counted many times) is easier

e Divide by multiplicity Tl 12 3 T
Vo V1 V2 V3 Vo V4 Vo Vu Vo V1 V2 V3 Vy . . Vo Vi Vo Va V
albg f blagf abgde'Itermg;;;:;
aghb f gab f abgfc al abagf c
abgec b agec abgcdentriesabgcd
agboec gabec abgecec that abecfag
acb f c ab f ab°f9V3=V4abcfd
abec f b ac f abec fd
» ‘abc d
acngcabg abcgog baggf
abcg b acg abcgd
Shrink tt Cutting set vertices (0, 1, 2 Subpatt b a d c
0 . rinkage patterns p’ . ng s es () ubpatterns olglalld g lolald blalgld]F bagcf
.0thrt(34) b agd abgd b agdc bacgf
b g ac g b ac b agec f blalcld!f

Input graph bagc abagec bagecec
Orlgmal Pattern p b acdg

B ter b acg abcg b acgf

ecomposmon b c a g c b a g b ac g g

b acd abcd b acdf

Vrt3&&4 b cad c bad b acdg

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17
e

ﬁﬁﬁ High Performance Graph Mining Systems o1

alchem.usc.edu

http://alchem.usc.edu

Is Decomposition Always Better?

e The answer is NO. It does not guarantee the total
runtime reduction

e The combined number of enumerated subpatterns may
be increased—we did not observe it

e Some subpatterns after the decomposition may be
very frequent

e One of the subpatterns of a size-5 pattern is the
very frequent 4-loop

® A performance model is necessary to estimate the cost of
computation to avoid these cases

High Performance Graph Mining Systems 22 alchem.usc.edu

http://alchem.usc.edu

System Challenges
e While the decomposition-based algorithm is known, there
are several challenges in building a general system
e Challenge 1: huge algorithm search space
® A pattern specification typically has multiple patterns
e 112 patterns for 6-motif; 823 patterns for 7-motif

e With computation reuse, the mining of these patterns are
fused together

e Cutting set for each should be determined jointly
e Challenge 2: fast and accurate cost estimation

e Challenge 3. decomposition not compatible with symmetry
breaking

e Challenge 4: beyond counting—advanced mining tasks such
as frequent subgraphs mining (FSM)

High Performance Graph Mining Systems 23 alchem.usc.edu

http://alchem.usc.edu

DwarvesGraph: A Decomposition-based
Graph Mining System
e We build a new graph mining system based on pattern
decomposition
® APIs to support various mining tasks
e Approximate-mining based cost model
e Efficient decomposition space search

e Partial symmetry breaking Input
graph

‘I-IIIIIIIIIIIIII..

s Compiler s

|

0 = Processed

| - -

. : application e
= : = program

~ élgorlt?_m Compiler & (Libraries
- eEner_a ion Backend B for graph
g ngihe . elylolliille)] Results
|

- -

| 2 L 4

2

.IIIIIIIIIIIIIIIII’

ﬁ?ﬁ High Performance Graph Mining Systems 24 alchem use.edu

http://alchem.usc.edu

DwarvesGraph APIs

e Users provide two programs

® Application program: specify the major user-defined
logics

e Compilation program: specify the patterns to mine and
invoke the compiler to generate the code

e APIs—both for convenient use and advanced
applications:

e® High-level: int get pattern count();
e Low-level: partial-embedding-centric model

High Performance Graph Mining Systems 25 alchem.usc.edu

http://alchem.usc.edu

Partial-Embedding Centric Model

® A new model designed for decomposition-based graph mining
e A partial-embedding matches a subpattern

® void process partial embedding(PartialEmbedding pe, int count);

e Invoked by the system when the partial-embedding pe can be “extended”
to reach at least one complete embedding of the whole pattern

® The count indicates how many complete embeddings can be extended
from the partial-embedding

® std::vector<Embedding> materialize(PartialEmbedding pe, int num);

@ Concretize the first num embeddings of the whole pattern from the partial
embedding

® These seem to be arbitrary, what are the system guarantees?

4-chain Pattern: Input Graph - Partial-Embedding
] C

A D

process partial embedding is called

when (1,0,2,*) is identified the * can be
either 3 or 4. Two ways to reach the whole

embedding from the partial embedding:

count=2 passed as the parameter.
She

ﬁﬁﬁﬁ High Performance Graph Mining Systems 2% alchem.usc.edu

http://alchem.usc.edu

Partial-Embedding Centric Model

e Complete Guarantee:

e If a partial-embedding pe matching a subpattern P, is
passed to process_partial_embedding...

e Then all other partial embeddings matching P, will be also
passed

e Coverage Guarantee:

® The set of subpatterns matched by the passed partial-
embeddings must fully cover all vertices of the pattern graph

® [t is more relaxed than decomposition

‘ Cutting set vertices (0, 1, 2) Subpatterns

e
ﬁﬁﬁ High Performance Graph Mining Systems

27 alchem.usc.edu

http://alchem.usc.edu

A Simple Example

1 // User-invoking functions 1 int pattern_count = 0;

2 int get_pattern_count(); 2 int num_embeddings_to_list = 100;

3 std::vector<Embedding> materialize(PartialEmbedding pe, int num); 3 Std::vector<Embedding> listed_embeddings;

4 // User-defined functions (UDFs) 4 void process_partial_embedding(PartialEmbedding pe, int count) {

,)))) _ _ 5 if (pe.subpattern_id == 0) {
5 void process_partial_embedding(PartialEmbedding pe, int count);) int remained = num_embeddings. to_list - pattern_count:
Partial-embeddi ng centric APIs 7 if (remained > 0) listed_embeddings.add_all(materialize(pe, remained));

8 pattern_count += count;
9}

10 }

Application

program Pattern counting with

bounded embedding list

17 "‘***t ChAIN.CC **HFw
2 D_GENERATE_CLASS(ThreeChainCountingClass);
3 // ... load the input graph && other initializations u
4 ThreeChainCountingClass * app = new ThreeChainCountingClass(graph); }
cout<<"three-chain count: "<<app->get_pattern_count()<<endl: _J
l{. _// S R = —— L = - i N T

| 7 Compiler * ¢ = new Compiler(); _
i 8 Pattern p(3); // construct the 3-chain pattern | Com P culely
| 9 p.add_edge(0,1); p.add_edge(1,2); program
10 c->compile(input="three_chain.cc", pattern=p, |
\11 class_name="ThreeChainCountingClass"); jJ

= —

|

® After processing the whole graph,
pattern count contains the total
number of embeddings of the target
pattern (before removing multiplicity)

—ensured by the complete guarantee.
® The materialize function is flexible to

let users to return a number of

concrete embedding if needed.

User programs

CHEM

High Performance Graph Mining Systems 28 alchem.usc.edu

http://alchem.usc.edu

Frequent Subgraph Mining (FSM)

3-Chain
Pattern

e Domain of a pattern vertex: /0\
e The set of input graph vertices that can map to it C
e bom(A)={0,1};Dom(B)={0,1,2,3};Dom(C)={0,1,2,3}
e Support—a metric to quantize the frequency of a pattern
e We use the minimum image-based (MINI) support definition*

e MINI support=the size of the smallest domain across all
pattern vertices

e MINI support of the 3-chain on the input is |{0,1}|=2.
e FSM aims to discover frequent patterns
e The application considers all patterns < a certain size

@ Return a pattern if its support is no less than a user-specified
threshold

Input graph

* Bringmann et al. What is frequent in a single graph? PA-KDD’08

High Performance Graph Mining Systems 29 alchem.usc.edu

http://alchem.usc.edu

FSM in DwarvesGraph

Partial-Embedding }

| D_GENERATE_CLASS(SupportCalculation); 4-chain Pattern: Input Graph
2 bool domain[PATTERN_SIZE|[INPUT_GRAPH_SIZE]; B C

3 void process_partial_embedding(PartialEmbedding pe, int count) { |
4 for (i=0;i< PATTERN_SIZE; ++i) { R A D

’(int mapped_v = pe.get_ \/ertex(l)

6 1f (mapped v' : UNDETERMINED) dommn[l][mapped v] = IJ e returned tuple: (1,0,2,%)
B e vertex D in 4-chain is

8 SupportCalculation * app = new SupportCalculation(graph); UNDETERMINED

9 domain.clear(); app->execute(&process_partial_embedding); — domain [A] [1] -1

10 support = graph.num_vertices; . _
11 for (i =0;i< PATTERN_SIZE; ++i) — domain[B][0]=1
e olomonta())- — domain[C][2]=1

12 @support mm(support domam[l] num_non_zero elements())) _
e count is not used

® The correctness is ensured by

e Complete guarantee: all partial-embeddings of a subpattern
are returned

e Coverage guarantee: all vertices in the pattern graph are
covered

Sz
ﬁﬁﬁ High Performance Graph Mining Systems 30

alchem.usc.edu

http://alchem.usc.edu

oI
a

C

Efficient Implementation

ne users are not aware of the decomposition-based
gorithm implementation

ne DwarvesGraph compiler generates the implementations

based on decomposition
e The partial-embedding centric model is general
® The complete embedding can be considered as a special

case for partial-embedding

e If the implementation does not use decomposition, our API

can still work—each embedding matches the complete
pattern

e The compiler efficiently generates the procedure explained
with embedding tables without expensive relational algebra

e Unlike RStream, which implements relational algebra

High Performance Graph Mining Systems 31 alchem.usc.edu

http://alchem.usc.edu

T, T, T3 T,

1@Q? EEEE ﬂyﬂ“gmﬁwiﬁﬁﬁT
g b\g b\a\g\c a\ \9\ @ entries 3 p 9 0
Efficient Implementation:i: i @i
)) FITL R \s'uﬂmq_—':\”\:\ﬂ;’
Vc is determined TR obas basar L lals
. sllals §@Jc w\\u E;@EI
Input Pattemp Cutting Set V. _ — by the algonthm ::\:\: %%%E— olelols \f saess
1: Decompose pusing V tgenerateKsubpatternsandthefshnnkae attems) generatlon engine ey aae :‘a‘c‘d‘;
2: num_shrinkages; = | : i
3: forall e, = (vg,vy,.. VIVl l)matchlng the cutting set V¢ do
;!3 , — e na————— Compute the count of each Tk with vertex-
6 M; + the"r.lumber of pe extending e, and matching the i-th subpattern set-based method similar to AutoMine
7: num_shrinkages;.clear() i
8: _ I
}‘1’ ‘ 7 For each embedding matching the shrinkage
12: [pei- ractsubpanem embedding(e,)), pattern, we check which partial-embedding
13: \ num_shrinkages;|pe;] — num. shrmkages, ; . .
14: dtor——————— = S does it contain. It should be removed from the
15: d f . .
16 forall: count of partial-embedding.
17:
18: .
19: the number of complete embeddings that
20: process_partial_embedding(pe,count) .)
21: end if can be extended from a partial-embedding of
22: end for
23 end for subpattern(i) before removing invalid ones.
24: end for e mEEEEEEEEEEREREN,
« Compiler *
Shrinkage patterns p’ . Cutting set vertices (0, 1, 2) Subpatterns - E : : Processed
@ otrervertices 3,4) E - = application :
. o B Algorithm = Program R
Origina, Pattern p 5 2 Generation Compiler & (Libraries
Sl core Ml B E for greph
Me,ge R~ ¥ Application S o computing) TS
Vertex 3 && 4 . Program 3 - :
. v

*

.IIIIIIIIIIIIIIIII’

Input graph

CHEM

High Performance Graph Mining Systems 32 alchem.usc.edu

http://alchem.usc.edu

Summary

e The partial-embedding centric model is not tied to the decomposition
® The complete and coverage guarantee can ensure the correctness

® The system implementation based on decomposition ensures the stronger
property:

e All subpatterns share the cutting set V.

® The coverage guarantee just requires all vertices are covered—disjoint
subpatterns that can cover all vertices also satisfy it—but not
decomposition method

® The algorithm we described is a template for the compiler to generate codes
for the given pattern graph

® The cutting set determined by algorithm generate engine

‘ Cutting set vertices (0, 1, 2) Subpatterns
. Other vertices (3, 4)
P1
Original Pattern p
Pattern
MDecomposmon

S

Saz

ﬁﬁﬁ High Performance Graph Mining Systems 13

alchem.usc.edu

http://alchem.usc.edu

We Still Need to Solve...

@ The cost model for algorithm generation engine to
evaluate different choices of cutting set

e Efficiently search the cutting sets across multiple
patterns

e How to make symmetric breaking work for
decomposition as much as possible?

ﬁﬁﬁﬁ High Performance Graph Mining Systems 34 alehem. use.edu

http://alchem.usc.edu

Cost Model

e We need to quickly evaluate the performance of
generated subpattern enumeration algorithms

® Executing of algorithms on real datasets/machines is
too expensive e e e by do

e Pattern enumeration is a set of nested for-loops
® The key problem: estimate the cost of each loop i
e AutoMine* is the first system that uses a cost model to ~ » cnitor

10: end for

select pattern matching schedules for better performance : edtor
e® Problem: its cost model is over-simplified

® Assumes that the algorithm runs on a random graph
with n vertices, each vertex pair is connected by a
fixed probability p

e For counting k-clique, #iteration of 1st,2nd,3rd,... k-
th loop are n,np,np?,...,np*=1. With k=5, line 6 is
should be executed »°p!° times

e Patents graph: n=3.8M, avg_deg=8.76, p=2.3x 1079,
line 5 is estimated to execute 3.28 x 107%* times

e In reality, Patents graph has 3M 5-cliques, line 5

executed for 3M x 5! times
Mawhirter et al. AutoMine: Harmonizing High-level Abstraction and High Performance for Graph Mining. SOSP’19

end for

Nz

._.__.._

High Performance Graph Mining Systems 35

for v, € N(Vo) NN(vy) do

for vi_1 € N(vo)NN(vi)N...N(vx_>) do
cnt < cnt +1

Counting k-clique

alchem.usc.edu

http://alchem.usc.edu

A New Cost Model

® Key insight: every iteration corresponds to a match of a pattern

@ The problem is converted to the pattern count estimation of the input graph
e Can be approximate
® Only need to be relative

1: Cnt <0
2: for i < 1...NumSamples do

3: vg < UniformSample(V(G))
] L 4 v U/u:_/:ornLS:am;)Ie(N(\'())) Graph Profiling Time (s)
® A new cost model based on approximate graph mining &« tijomsanplet) CiteSeer 1.96
; l ‘ZI§< ‘(/)1(t o . vo)| - IN(vy MiCo 3.50
e Generate a reduced graph by sampling input graph & eair " 7O pens 6.64
9: end for LiveJournal 7.14
o At most 32M edges 10: Cnt < Cnt/NumSamples/6 Friendster 7.10

e Run neighborhood sampling in ASAP* to get the approximation of the patterns up to
certain size, store the results in table persisted in disk

e During algorithm search, query the table to get the cost of loop based on the count of
the corresponding pattern

® Obtain the count of frequent patterns accurately, while underestimating that of the
infrequent ones

Corresponding Approximate
The pa;-tern Loops pat:’erns g Pa'::)er:ICount Not Found Estimated A new input I s]
matching 0% Table in the table Num. Iterations graph ‘< o0
algorithm P . dataset >
‘\I (MISS) 3 Graph sampling‘

FE Loop ¥y . . Approxim Loop 0: XXX A reduced A ol
YEH ate Graph [} oo Areduced ol
N m ini o . . « "/ \\.

Shz= Loop v I—) I P commt) T_al Mining 2 3 stimated with at most| ¥"—s s
m=g) :-. XXX » ‘] Loop 2: Cost E’ edges Persistent Pat.tern Estl).(::(:unt

s Query w n a — / Dataset Profiling ! on the disk | =T v

;\ (L1 Approx. g - T . || Pattern | Esti. Count i

S Count Approximate| e XXX - pozet “

“es LOOp se Pattern I - YYY
Persiste.nt on Disk Count Disk
. Cachedin MemorY| Eound in the table (HIT) Table |l
* lyer et al. ASAP: Fast, approximate graph pattern mining at scale. OSDI’18
High Performance Graph Mining Systems
36 alchem.usc.edu

http://alchem.usc.edu

The New Cost Model Effectiveness

cs,6 motif,r=0.73450 cs,6-motif,r=0.94952

i

x gk K T g

2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Est. cost (Automine)™ Est. cost (Our System)”

Runtime (single-thread) (s)

AutoMine Our Method

ﬁ?ﬁ High Performance Graph Mining Systems 37 alchem.usc.edu

http://alchem.usc.edu

Decomposition Space Search

® The graph mining applications need to handle multiple patterns

e Motif Counting (MC) aims at counting all connected patterns
with a particular size

® Need to select a cutting set for each pattern

e With computation reuse, enumeration of multiple patterns can
be fused, the search becomes joint

e We propose the circulant tuning method with fast convergence

.9 9 9

v

Selected +

Separate Tuning

\
Se=

ﬁﬁﬁ High Performance Graph Mining Systems 18

alchem.usc.edu

http://alchem.usc.edu

Circulant Tuning

Evaluate Evaluate
all Vc with all Vc with
cost model cost model

Evaluate
all Vc with
cost model

Fix C1 and C2,

considering
computation reuse among all patterns

Selected
Separate Tuning
Fix Co and C2,
lell lel4d : conSIderlng
30| T = 175/ | — Circulant Tuning computation reuse among all patterns
: T 1 - = Independent Sampling
: R Circu.lantTuning 1.501 L — - Simulated Annealing
4;'2.5 " ~~ Independent Sampling 2 1.25! | —— Genetic Algorithm
8 : =+ Simulated Annealing 8
2.0 : —— Genetic Algorithm
e~ L.
1.5 ="~
00 02 04 06 038 1.0 00 02 04 06 08 1.0
Normalized Searching Time Normalized Searching Time Fix Co and C1 :
considering
. - computation reuse among all patterns
Circulant Tuning b ga’ b
lzz

CHEM

High Performance Graph Mining Systems 39 alchem.usc.edu

http://alchem.usc.edu

Partial Symmetry Breaking

e Problem: with symmetry breaking for subpatterns, the
complete embeddings cannot be correctly joined

Ty T, T3 T,
Vo V1 V2 V3 Vo Vi V3 Vy Vo V1 V2 V3 V4 . g Shrinkage patterns p’ Cutting set vertices (0, 1, 2) Subpatterns
abgf blajg|f abgfdﬁltermg";";";":"; :Oth rtices (3, 4)
agbf gabf abgfc al —==—r e Py
abgec b agec abgcdentriesabgcd a b
agbec gabec abgcc that abecfag Original Pattern p
acb f c ab f abcf9V3=V4abcfd Pattern
abec f bac f abec f d c \ Decomposition
abec d
acngcabg»abcggﬂbaggf Merge e
abcg bacg abcgd bagad ec Vertex3 && 4
b g ad gbad b agdf bagcf InPUtgraph
bagd 2>9d bagdec bacgf I for v € V(G) do
b gac g b ac b agecf blalcld!|f 2: forvi € N(vo) do
g ° ab g9.¢ b a - bacd 9 2 fort‘"ilflthl/(;?i)ztcj{\I/('E‘\I')?'ow)
bacg abcg bacgf 5: end-fo:"— g
bcag cbag bacgg 6: end for Onl a T=Ye
b acd abcd bacdf 7: end for y app .
bcad cbad bacdg @Partial s When the gain
. I forvo € V(G) d Is larger than
Symmetry breaking: 2 for vy € Ny {vi 1 > v} do 9
“va<vi” for p: T T SOOI LI 2 threshold,
“V0<V2" fOI‘ p2 1 2 5: e.\Ten(l:trian:eIe(vo.\'3.\';)
Vo V4 V2 V3 Vo V1 V2 Vy 6: extend_triangle(vy.,vo,v2) based On
ag b f b a g f 7 e.nend_trl:angle(v|.\'3.1'0)
8. 4 1 [t [2,V0,V
agbc bago . N e il cost model.
acb f b acf 3 :(1)3 end"z)‘:f‘”
acbgMbacg»vovlvz‘hv‘* 12: end for
b gad abgd
bgac abgec Solution: perform symmetry breaking for
beag abe “subpattern of subpattern” when possible
and compensate for asymmetric parts
High Performance Graph Mining Systems
9 9 40 alchem.usc.edu

http://alchem.usc.edu

DwarvesGraph Evaluation

® System:
e Each node has two 8-core Intel Xeon E5-2630 CPUs (hyperthreading disabled) and
64GB DRAM
® GPU (Pangoline): NVIDIA V100 GPU with 32GB memory
e Arabeque and Fractal (distributed) use 8 nodes. Arabeque uses Hadoop 2.7.7, Fractal
uses Apache Spark 2.2.0
e Applications:
® Motif Counting (MC): count all connected vertex-induced patterns with a particular
size
e Pseudo Clique Mining (PC): A vertex-induced pattern is a pseudo clique if the number
of its edges is no less than n(n —1)/2 — k, n is the #vertex and k is a parameter

® Frequent Subgraph Mining (FSM) Graph Abbr. [VI | 1Bl | ILI
CiteSeer [5, 18,43] cs 3.3K 4.5K 6
e Other systems: EmailEuCore [28,54] | ee | 1.0K | 16.1K | 42
_ _ _ WikiVote [26] wk | 7.1K | 100.8K | N/A
e In-house AutoMine implementation MiCo [16] me | 966K | LIM | 29
Patents [27] pt | 3.8M | 165M | N/A
® RStream (O SDI'1 8) Labeled-Patents [27] | Ipt | 2.7M | 14.0M | 37
LiveJournal [4, 30] 1j 48M | 429M | N/A
! — Friendster [53] fr [656M | 1.8B | N/A
e Arabesque (SOSP’15) App | Craph O;;é‘;‘s’l‘ 0““_;’2‘;2‘5“?1' RMAT-100M [10] | rmat | 100M | 1.6B | N/A

® Peregrine (EuroSys’20)

e Pangoline (CPU/GPU) (VLDB'20)
e Fractal (SIGMOD'19)

® GraphPi (SC’'20)

3-MC

4-MC

5-MC

mc
pt
lj
wk
mc
pt
lj
wk
mc

pt

161ms
0.9s
9.0s
7.0s
31.7s
24.3s
457m
4345s
2.91h
54m

230ms
1.9s

13.4s
11.5s

45.2s

82.1s

367m
5300s
5.56h
117m

Graph datasets

High Performance Graph Mining Systems

41

alchem.usc.edu

http://alchem.usc.edu

Comparing with
AutoMine, RStream, and Arabesque

App. | G | DwarvesGraph | AutominelnHouse RStream Arabesque
cs 0.16ms 0.16ms (1.0x) 142ms (888x) 10.1s (63,125x%)
ee 0.8ms 7.3ms (8.9x) 21.0s (25,471%) 10.2s (12,352x)

% wk 7.6ms 27.3ms (3.6x) 17.9m (141,437x) 12.1s (1,586x)
A pt 335.7ms 931ms (2.8x) 104.1m (18,611x) 96.4s (287x)
mc 48.0ms 161ms (3.4x) 144.8m (181,051x) 21.1s (440x)
lj 2.8s 9.0s (3.3x) T 24.3m (529x)
cs 0.2ms 4.8ms (23x) 3.7s (17,647x) 9.9s (46,794x)
ee 9.4ms 920ms (98x) 132.4m (842,186x) | 19.1s (2,023x)
S | wk 60.0ms 7.0s (117x) T 402.2s (6,704x)
< pt 1.5s 24 .3s (16x) T 68.3m (2,711x)
mc 1.3s 31.7s (24x) T 42.8m (1,942x)
1j 32.8s 456.5m (836x) T C
cs 1.4ms 332ms (229x) 146.4s (101,124x) 11.4s (7,843x)
ee 360.3ms 104.8s (291x) T 19.4m (3,233x)
S | wk 5.3s 72.4m (823x) T C
A pt 32.6s 53.9m (99x) T C
mc 114.7s 174.6m (91x) T C
j 167.7m T T C
cs 247.0ms 35.9s (145x) 108.7m (26,403x) 48.7s (197x)
S | ee 91.3s 259.0m (170x) T C
O wk 38.7m T T C
pt 57.9m T T C
cs 0.3ms 0.5ms (1.7x)
< ee 719ms 67.1s (93x)
~ | wk 735ms 90.8s (24x)
Graph Abbr. VI IEIl ILI pt 499ms 15.7s (31x)
CiteSeer [5, 18,43] cs 3.3K 4.5K 6 cs 0.3ms 0.5ms (1.7x)
EmailEuCore [28,54] ee 1.0K 16.1K 42 8 ee 1.3s 433.1s (322x)
WikiVote [26] wk 7.1K | 100.8K | N/A 0 wk 1.2s 463.0s (387x)
MiCo [16] mc | 966K | L.IM | 29 pt 582ms 86.2s (148x)
Patents [27] pt 3.8M 16.5M | N/A = cs 0.2ms 0.3ms (1.5x) 522ms (2,609x) 10.3s (51,315x)
Labeled-Patents [27] Ipt 2.7M 14.0M 37 N ee 0.2ms 0.2ms (1.0x) 3.6s (18,090x) 9.6s (48,235x)
LiveJournal [4, 30] lj | 48M | 429M | N/A = | Ipt 20.8s 20.3s (0.98x) 4,713.5s (226x) C
Friendster [53] fr | 65.6M | 1.8B | N/A =~ | mc 308ms 441ms (1.4x) 149.1m (29,013x) C
RMAT-100M [10] rmat | 100M 1.6B N/A v cs 0.6ms 0.6ms (1.0x) 77.9ms (130x) 9.6s (15,931x)
NS ee 0.2ms 0.2ms (1.0x) 210ms (1,049x) 9.8s (48,985x)
Graph datasets = | Ipt 18.65 18.1s (0.98x) 89.0m (287x) C
- mc 124ms 300ms (2.4x) 141.9m (68,813x) | 157.9s (1,276x)

High Performance Graph Mining Systems

42

alchem.usc.edu

http://alchem.usc.edu

Comparing with
Peregrine, Pangolin, and Fractal

App. G | DwarvesGraph | Peregrine | Pangolin(CPU/GPU) | Fractal
cs 0.16ms 5.8ms 5.0ms / 0.1ms 5.9s
3-MC pt 0.3s 1.4s 1.4s/0.2s 79.7s
mc 48ms 60ms 280ms / 14.1ms 12.9s
cs 0.2ms 21.2ms 15.3ms / 0.7ms 6.0s
4-MC pt 1.5s 11.2s 329.5s / 8.0s 141.6s
mc 1.3s 5.3s 242.7s/3.7s 58.4s
cs 1.4ms 41.7ms 688.3ms / 1.3ms 6.1s
5-MC pt 32.6s 513.6s C/C 4517.0s
mc 114.7s 5,635.1s C/C 1240.0s
cs 0.2s 0.8s 149s /C 4.6s
6-MC pt 3,472.65 T Cc/C T
FSM-100 14.0s C C/C 346.6s
FSM-300 9.6s C C/C 280.2s
FSM-1K | ™¢ 2.5s 1,782.2s C/C 169.1s
FSM-3K 0.5s 189.3s C/C 109.4s
FSM-1K 1,511.5s T C/C T
FSM-10K Int 71.4s 34,403.6s C/C T
FSM-20K | P 9.0s 4,781.0s 333.3s/C 270.1s
FSM-25K 2.7s 1,353.3s 126.5s / C 250.7s

Graph Abbr. VI IEl ILI
CiteSeer [5, 18,43] cs 3.3K 4.5K 6
EmailEuCore [28, 54] ee 1.0K 16.1K 42
WikiVote [26] wk 7.1K | 100.8K | N/A
MiCo [16] mc 96.6K 1.1IM 29
Patents [27] pt 3.8M | 16.5M | N/A
Labeled-Patents [27] Ipt 2. M 14.0M 37
LiveJournal [4, 30] 1j 48M | 429M | N/A
Friendster [53] fr 65.6M 1.8B N/A
RMAT-100M [10] rmat | 100M 1.6B N/A

Graph datasets

High Performance Graph Mining Systems

Pangolin’s GPU performance is competitive, but
achieved with a significantly more expensive

device (NVIDIA V100-32GB).

43

alchem.usc.edu

http://alchem.usc.edu

Comparing with GraphPi

three_motif
four_motif
five_motif
three_motif (Count)
four_motif (Count)
five_motif (Count)

— 50 T
(«
.g.
o 40 '
- |
) |
|
dh) 30 |
> |
o |
2 20- l
= |
g !
o 10- }
Q.
7, |
|
0-
Dataset
GraphPi only handles the individual pattern and
does not support FSM
Graph Abbr. VI [El ILI
CiteSeer [5, 18,43] cs 3.3K 4.5K 6
EmailEuCore [28, 54] ee 1.0K 16.1K 42
WikiVote [26] wk 7.1K | 100.8K | N/A
MiCo [16] mc 96.6K | 1.IM 29
Patents [27] pt 3.8M 16.5M | N/A
Labeled-Patents [27] Ipt 2. M 14.0M 37
LiveJournal [4, 30] 1j 48M | 429M | N/A
Friendster [53] fr 65.6M 1.8B N/A
RMAT-100M [10] rmat | 100M 1.6B N/A

Graph datasets

High Performance Graph Mining Systems

44 alchem.usc.edu

http://alchem.usc.edu

Decomposition Space Search Methods

R: random; S: separate tuning; C: circulant tuning

RT: runtime; ST: search time

Circulant tuning is slower

than separate tuning

App. | Graph | R-RT S-RT S-ST C-RT | C-ST
CS 5.3ms 2.2ms 5.0ms 1.4ms 0.6s

E ee 917ms | 392ms | 5.0ms | 360ms | 0.4s
h wk 14.4s 8.2s 5.0ms 5.3s 0.8s
pt 69.3s 36.9s 1.7ms 32.6s 0.7s

CS 576ms | 280ms | 37.2ms | 247ms | 325s

‘E) ce 4377s | 99.8s | 35.8ms | 913s | 252s
b wk — 2,5159s | 40.1ms | 2,320.0 | 409s
pt — 3,688.5s | 43.7ms | 3,472.6 | 222s

Circulant tuning achieves
up to 1.57x speedup.
For large graph, the

benefit is more and
search time can be

High Performance Graph Mining Systems

amortized.

HEM

45 alchem.usc.edu

http://alchem.usc.edu

Partial Symmetry Breaking and
Decomposition

103-
¢ iilhi
]
E
= Bl Baseline
z 1071 ma +SB
B +DECOM
| s +DECOM+PSB
10-3 . . . _ _ _ _ _ _ , _ ! ! _
PO pl p2 p3 p4 p5 p6 p7 p8 p9 plOpllpl2pl3pl4pl5pl6pl7pl8pl9
p0 — p19 are all size-5 patterns except for 5-clique

ﬁ?ﬁ High Performance Graph Mining Systems 46 alchem.usc.edu

http://alchem.usc.edu

Large Graphs and Large Patterns

Graph | #Vertices | #Edges App. Runtime (s)
4-Motif 4,301
fr 65.6M 1.8B 4-Chain 262
4-Motif 5,900
rmat 100M 1.6B 4-Chain 200

None of the previous exact graph mining systems have reported
4-motif results on graphs at this scale

=
o
7

=00 al !

6-CHM 7-CHM 8-CHM 6-CHM 7-CHM 6-CHM 7-CHM

k-CHM: k-chain mining
Keep increasing the size of the pattern until the task cannot
finish within 24 hours

W

Runtime (s)
-
© O

[

[
o
'3

High Performance Graph Mining Systems 47 alchem.usc.edu

http://alchem.usc.edu

DwarvesGraph: A Decomposition-based
Graph Mining System
e We build a new graph mining system based on pattern decomposition
e® APIs to support various mining tasks
e Approximate-mining based cost model
e Efficient decomposition space search
e Partial symmetry breaking
e The results show that our system is faster than all existing systems

and can likely scale to large patterns Input
graph
‘I-IIIIIIIIIIIIII..

Compiler

Processed
application
program Runtime

(Libraries
for graph
el V)l Results

EeemEmEnn?®

Algorithm
Generation
Engine

Compiler

Backend

‘IIIIIIIIIIII..

QgEmnn

2

.IIIIIIIIIIIIIIIII’

ﬁ?ﬁ High Performance Graph Mining Systems 48 alchem use.edu

http://alchem.usc.edu

Why Distributed Graph Mining System?

e® Single-machine shared memory systems (Peregrine, Pangolin,
AutoMine,DwarvesGraph)

e® Both #cores and amount of memory is limited to one machine
e Single-machine out-of-core systems (RStream)

e Scale to large graph with external storage

e #cores is still [imited to one machine

e Sacrifice efficiency: to fully utilize disk bandwidth, a less efficient
algorithm with graph streaming and relational join—much slower
than recent systems

e Distributed systems with graph replication (Arabesque, Fractal,
GraphPi)

e The complete graph data replicated in each machine
e® Scaling #cores, but not memory
e Distributed systems with graph partition (G-Miner, G-Thinker)
e® Both #cores and amount of memory can scale
e® Current systems sacrifice efficiency and programmability

High Performance Graph Mining Systems 49 alchem.usc.edu

http://alchem.usc.edu

Graph Mining Systems with Graph Partition

e Poor programmability: complicated task-based subgraph-centric
model

e Users responsible for dividing the enumeration process into a number
of subgraph-centric tasks

e Each task: users specify the subgraph containing all data needed

e Example: clique, task—"counting the number of k-cliques
containing a given vertex”, subgraph—an induced subgraph
including all 1-hope neighbors of the vertex

® Users need to handle system problems such as stragglers
e Inefficient system for communication/computation scheduling
e Reference-counting based SW cache with GC for fetched remote data
e Triangle counting on Patents dataset (3.8M vertices)
e G-Thinker (8 nodes: 16 cores each, 128 cores in total): 285.3s

e® A simple single-thread implementation (reported in AutoMine):
6.2s

e® Peregrine with 16 cores single machine: 1.1s

High Performance Graph Mining Systems 50 alchem.usc.edu

http://alchem.usc.edu

Goals & Problems

Khuzdul: A distributed graph mining system with graph
partition with simple programming interface and high
performance

Problem 1: Can users just specify the patterns without
considering all other system issues?

Problem 2: How to efficiently control scheduling of
computation and communication?

Problem 3: How to achieve efficient implementation?

High Performance Graph Mining Systems 51 alchem.usc.edu

http://alchem.usc.edu

Khuzdul: Key Ideas

e Breaking down the vertex-set-
based enumeration process
into smaller operations that
can be expressed with vertex

functions

® Vertex functions transparent

to users, unlike graph
processing—"think like the

vertex”

® The inter-loop dependency
among vertex functions

e Efficient multi-level scheduler
designed for inter-loop
dependency

e Optimizations to reduce data
movements

\
Se=

ﬁﬁﬁ High Performance Graph Mining Systems 55

Graph Mining Compiler

Algorithm Searching
(similar to Automine)

—— Pattern Matching
User-Specified |I~ Process (nested
~ Patterns loops)

\ 4

Pattern Matching Process Expressed by Vertex-Functions

Distributed Runtime
Engine

Execution

Graph Mining Results (e.g., Pattern Counts)

alchem.usc.edu

http://alchem.usc.edu

Inter-loop Dependent Vertex Function

V2 3

-
.
-

for v.0 in V(G):

for v.1 in N(v_0):

SO0 = intersect(N(v 0), N(v 1)):
or v_2 in SO: :
dependency :

S1 = intersec N(v_2))

for v_3 in S1: A reduce operation: No loop- O vs
carried (intra-loop) data
dependency ~ Sl=intersect(S0,N(v2))

Extract the inter-loop o ¢ Level 1

process_v_1

. . |
dependency explicitly by Level 0 © (Computation)

several vertex-functions vo @
data_dependency_1

Level O = Level 1

data_dependency_2

data_dependency 0 = SOME_INITIALIZER
14
for v_0 in V(G): V2 V2
. Level 1 O
v_1 candidates, data_dependency 1 process _v_0O(data _dependency 0, v_0, N(v_0)) . .
for v_1 in v_1_ candidates: .

v_2 candidates, data_ dependency 2 process v_1(data dependency 1, v_1, N(v_1))

for v_2 in v_2 candidates:
S vo @ —0v1
v_3 candidates = process v 2(data dependency 2, v_2, N(v_2)) N

process_v_2

for v n-1 in v n-1 candidates: .
process_v_n-1(data_dependnecy n-1, v _n-1, N(v_n-1)) Level 2 . V3 (computation)

Level 1 = Level 2

High Performance Graph Mining Systems 53 alchem.usc.edu

http://alchem.usc.edu

Inter-loop

Dependent Vertex Function

e We can illustrate the idea conceptually with Python-like

pseudocode

for v_0 in V(G):
for v_1 in N(v_0):

SO = intersect(N(v_0@), N(v_1)):

for v_2 in Seo:
S1 = intersect(SO, N(v_2))
for v_3 in S1:

++ 4-clique-count

def process_v_0(data_dependency 0, v_0, N(v_0)):
dependency = {}
depdendency["v_@_nbrs"] = N(v_0)

return N(v_0), dependency

def process v _1(data dependency 1, v ., N(v_1)):
N(v_0) = data_dependency_1["v_©_nbrs"]
SO = intersect(N(v 9), N(v_1))
dependency

&fependency["s 0"] ;

return SO, dependency

def process_v_2(data_dependeicy 2, v_2, N(v_2)):
&fe = data_dependency 2["s_0"]
S intersect(Se, N(v_2))

data_dependency_© = SOME_INITIALIZER
for v_0 in V(G):
v_1 candidates, data_dependency 1 =mpnecess v _0(data_dependency @, v_0, N(v_0))
for v_1 in v_1_ candldates

v_2 candldates«\data dependency J;f process_v_1(data_dependency 1, v_1, N(v_1))

for v_2 in v_2 candidates:

v_3_candidates = pnocess_v_(&data_dependency_z@ v_2, N(v_2))

for v_n-1 in v_n-1_candidates:

process_v_n-1(data_dependnecy_n-1, v_n-1, N(v_n-1))

High Performance Graph Mining Systems 54 alchem.usc.edu

http://alchem.usc.edu

Inter-loop Dependent Vertex Function

e® Our system generates C++ codes based on the user-
specified patterns

Aggregator<uinté4_t> triangle_cnt_agg;

class ProcessSecondTrlangleVertex public VertexFunction {
Setx , Set neighbors, Objects shared_objs, Buffer workspace) {

\intersect N(v_1)
// cnt += |[N(v_0)\inte]
VertexSet::intersect(v_0_nbrs, neighbours, &intersection_result);
triangle_cnt_agg.add(Intersection_result.size());

}

return NULL;
yInter-loop data
dependence
class ProcessFirstTriangleVertex: public VertexFunction {

Set<VertexFunctionx> process_vertex(VertexId v, VertexSet neighbors, Objects shared_objs, Buffer workspace) {
Set<VertexFunctionx> S;

// specify the objects to be shared with new vertex-functions Implemented Triangle-Counting Algorithm:
Objects obis _to share; . N(v): the neighbour vertex set of v;

cnt = 9;
for v_@ in V(G):
for v_1 in N(v_0):

te 'N(v 8) \intersect N(v 1)° cnt += |N(v_0@)\intersect N(v_1)|
nction<ProcessSecondTriangleVertex>(u);

~0bJS to_share. put("v @_nbrs", &nelghbours)
/] for v_1 \in N(v_9):

for (VertexId u in neighbours) {

// allocate a vertex-function to calcu
VertexFunction * f = alloc
. f->set_shared_objs(objs_to_share);
77 the buffer needed by the new vertex-function stores N(v_8) \intersect N(v_1)
// whose size cannot exceed min(|N(v_0)|, |N(v_1)])
f->set_workspace_size(min(get_degree(u), get_degree(v)) x sizeof(VertexId));

(S.add(f);) Level 0 = Level 1

HEM

High Performance Graph Mining Systems 55 alchem.usc.edu

http://alchem.usc.edu

Abstract Execution Model

How to pick up the next
vertex-function determines the

concrete execution model.
FIFO: breadth-first schedule
FILO: depth-first schedule

1: F, < a setgt user-provided initial vertex-tunctions
2: while F¢ is not empty do | f
3 ple up a vertex-function f, from F,,) consume item
4: remove f, from F,
5. New_F, < execute(fy) _

| The execution of a vertex-

6: for all frv e NN e'w_F,,, do function may trigger new

) vertex-functions in the next
7 add 'f v t0 Iy loop level (in the algorithm).
8: end for
9: end while

e | B CHEM

High Performance Graph Mining Systems 56 alchem.usc.edu

http://alchem.usc.edu

Problems of Conventional Scheduler

o (pending/ready/zombie) Function with X active (not terminated) ‘ Function DFS: too few on-the-fly functions (in the
children . . o
the- ending queue) => Less efficient
. Terminated functions (resource released) On-the-fly P & q .) . .
Functions communication batching/overlapping
- Allocatedbuffer & || 2 EEEEEEEN NSNS NENNNNNNENENNENENNNNENNNNNEENENNNNNNENEEEEEEENEEEEEES
Level O
- Free buffer
[N N
Level 1
[N N]

Level 2 . .‘ see

Level 3
. , / DFS Scheduling
Buffer: the fragmentation problem T
Holes es e
o FIFO (BFS) oz
] . — Pending Queue :setch tget
e Memory fragmentation & -) Graphoat
Triggered
e High overhead & e =' |
. | Zombie Pool —"‘ Ready Queue
e Communication batching and overlapping with computation & Erecution |
. FILO (DFS) Release Resource

e No effective communication batching and communication/computation overlapping &

HEM

High Performance Graph Mining Systems 57 alchem.usc.edu

http://alchem.usc.edu

Pending Vertex-Functions

Multi-level Scheduler >

Node-K |Node-(K+1) | Node-(K+2) Node-(K-1)
*** | Functions

Initial Vertex Functions N M N
Functions| Functions | Functions

e |
evel- Fetch Graph Data Function . Data is - Graph
Resource Pending Queue [IENINNN) Ready Queue Creation ||~ Pending fetched § Data

() Fetch

Reserved
Execution

(like graph
Execution Graph Data

data buffer) Zombie Pool
Ready
PR T S
evel- Functions Fetch Graph Data

Resource Pending Queue — Ready Queue Resource _ﬂl

Reserved Deallocation Execution Execution
(like graph see
data buffer) Zombie Pool Execution

Graph Data

Fetch
-------"-"a;a;ai;g;,:;/ Vertex function life time
Level-2 Functions Fetch Graph Data Execution

Resource Pending Queue Ready Queue
- eeee———r A =i U U U P L LS. (LU U
(like graph :
data buffer) Zombie Pool An Level |
i Resume

Executing ready

vertex-functions xecution
Level
see ——— ___i+._1iu“ ————
___ Level i+1
Newly Triggered Adding
Executing ready Pause Resume Al
Fetch Graph Data

eee function

Functions triggered
Level-K functions pertexiunctions Level e Execution executed
Resource PendlngQueuel— Ready Queue RSP ENSP VS L -—-—‘ ————————————————————————————————————
(::::egr;?h / Level i+2
Zombie Pool Execution Adding —— Al

o vertex function
functions -functions o000

® Same level
e Communication batching and overlapping with computation

e Shuffle the vertex functions into different groups, each group only fetches the data from

one node
e Each vertex function only accesses the neighbors of a given vertex—all in one node

® Different level
® Avoid memory fragmentation and reference counting

High Performance Graph Mining Systems 58 alchem.usc.edu

http://alchem.usc.edu

Reducing Communication with SW Cache

— Trigger new vertex-function &

Request the ~ Returnthe
‘ Found in the ‘I Cached
Cache? Graph Data

o Vertex with X trigger functions Graph Data
. Cached vertex (degree >= threshold) § // of v L

of a Vertex v

Fetch the Graph Data of v through the Network

I
— -

¥

Is Cache Full?

in total 10

neighbors If deg(v) >= threshold,

cache the Graph Data of v

S2e HEM

ﬁ?ﬁ High Performance Graph Mining Systems 59 alchem usc.edu

http://alchem.usc.edu

Communication Merging

Pending Vertex-Functions

Requests for Graph Data (may contain duplicates)

Merge Duplicated
Requests

Requests for Graph Data (no duplicate)

e Efficient hash-table based implementation that allows
false negative in merging

ez LCHEM

Wﬁ High Performance Graph Mining Systems 60 alchem usc.edu

http://alchem.usc.edu

NUMA Subpartition

Graph Data
Node Ol Node 11 Node 21
Partition 0 Partition 1 Partition 2

NUMAl NUMA]l NUMA(l NUMA]l NUMA‘l NUMA]l
Part Part Part Part Part Part

T 1T 1T 1 1 1

Execution Execution Execution Execution Execution Execution
Engine Engine Engine Engine Engine Engine

e Each NUMA socket maintains an execution engine

e All the buffers of this engine (e.g., fetched graph data,
workspace buffer) are NUMA-local

® Avoid expensive cross-socket memory accesses

High Performance Graph Mining Systems 61 alchem.usc.edu

http://alchem.usc.edu

Khuzdul Evaluation

® System:

® Each node has two 8-core Intel Xeon E5-2630 CPUs
(hyperthreading disabled) and 64GB DRAM

e Network: 56GBps InfiniBand
e Applications: triangle, 3-motif, 4-clique, 5-clique
e Single-machine systems
® In-house AutoMine implementation
® Peregrine (EuroSys’20)
e Pangoline (CPU/GPU) (VLDB'20)
® Distributed Systems
® Partitioned graph: G-thinker (ICDE'20) graph datasets
® Replicated graph: GraphPi (S5C'20)

High Performance Graph Mining Systems 62 alchem.usc.edu

http://alchem.usc.edu

Comparing with G-Thinker: Partitioned Graph
Triangle Counting

Graph Khuzdul G-thinker

wk 24.4ms 1.0s (41.0x)
mc 40.0ms 2.1s (52.5x)
pt 2549ms 285.3s5(1,119.3x)
lj 826.8ms 31.6s (38.2x)
uk 690.1s CRASHED
tw 2171.2s CRASHED
fr 81.2s CRASHED
High Performance Graph Mining Systems 63 alchom. usc.edu

http://alchem.usc.edu

Application

Triangle

3-motif

Graph
wk
Mc

pt

J

uk

tw

Fr

wk

MC

Khuzdul (8-node)

24.4ms
40.0ms
257.5ms
826.8ms
690.1s
2171.2s
81.2s
24.8ms
52.8ms
429.3ms
1.9s
3,005.1s
9401.0s
190.5s

GraphPi (8-node)

534.3ms
704.4ms
6.7s
9.8s
1268.4s
2886.5s
169.2s
1.1s

1.5s
13.8s
20.1s
1,380.7s
3,032.1s
388.5s

High Performance Graph Mining Systems

64

Comparing with GraphPi: Replicated Graph

alchem.usc.edu

http://alchem.usc.edu

Comparing with GraphPi: Replicated Graph

Application |Graph |Khuzdul (8-node) GraphPi (8-node)

4-clique

5-clique

wk
mc
pt
J
uk
tw
fr
wk

mcC

43.0ms
321.5ms
412.7ms
5.3s
17,241.0s
18,817.0s
190.5s
78.1ms
11.1s
822.5ms
188.6s
220.3s

500.4ms
844.0ms
6.7s
12.8s
31,008.6s
TIMEOUT
177.8s
522.1ms
8.25

6.8s
174.7s
260.0s

High Performance Graph Mining Systems

65

alchem.usc.edu

http://alchem.usc.edu

Comparing with Single-Machine Systems

Application Graph

Triangle wk

mcC

tw

Fr

Khuzdul (8-node /
single-node)

24.4ms / 23.4ms
40.0ms / 100.2ms
257.5ms / 1.6s
826.8ms / 5.5s
690.1s / 6132.8s
2171.2s / 16806.9s

81.2s / 515.3s

Automine

9.9ms

52.3ms

330.7ms

2.8s

7305.0s

30866.1s

378.3s

Peregrine

8.3ms
68.7ms
1.1s

3.8s
4667.0s
20605.5s

305.2s

High Performance Graph Mining Systems

Pangolin

/ms
56ms
289ms
2.2s
26.6s
747.7s

384.6s

66 alchem.usc.edu

http://alchem.usc.edu

Comparing with Single-Machine Systems

Application

3-motif

Graph

Wk

mC

uk

tw

fr

Khuzdul (8-node /
single-node)

24.8ms / 39.8ms
52.8ms / 255.2ms
429.3ms / 2.8s

1.9s/12.8s

3,005.1s / 24700.190s

9401.0s / TIMEOUT

190.5s / 1420.8s

Automine

27.4ms
160.3ms
930.9ms

8.9s

TIMEOUT (>10
hours)

TIMEOUT

1206.8s

Peregrine

26.9ms
84.7ms
1.7s

4.6s

4660.9s

20477.6s

316.1s

High Performance Graph Mining Systems

Pangolin

45ms
288ms
1.5s

29.2s

TIMEOUT

TIMEOUT

6305.9s

67 alchem.usc.edu

http://alchem.usc.edu

Comparing with Single-Machine Systems

Application

4-clique

Graph

wk

mC

uk
tw

Fr

Khuzdul (8-node /
single-node)

43.0ms / 77.0ms
321.5ms / 1.9s
412.7ms / 2.6s

5.3s / 37.6s
17,241.0s / TIMEOUT
18,817.0s / TIMEOUT

157.9s / 887.6s

Automine

47.2ms

1.2s

381.0ms

31.3s

TIMEOUT

TIMEOUT

570.3s

Peregrine

104.6ms
1.8s

1.3s
49.6s
TIMEOUT
TIMEOUT

1237.5s

High Performance Graph Mining Systems

Pangolin

47ms
2.8s
773ms
54.7s
MEM
MEM

MEM

68 alchem.usc.edu

http://alchem.usc.edu

Comparing with Single-Machine Systems

Khuzdul (8-node /

Application Graph e Automine Peregrine Pangolin
5-cligue Wk 78.1ms / 226.3ms 124.7ms 477.2ms 146ms
mc 11.1s / 71.2s 46.8s 78.0s 132.0s
pt 822.5ms / 5.3s 408.4ms 1.5s 967ms
lj 188.6s / 1385.8s 982.9s 2076.6s MEM
Fr 220.3s / 1593.9s 900.2s 3032.8s MEM

High Performance Graph Mining Systems

69 alchem.usc.edu

http://alchem.usc.edu

Communication/Computation Overlapping

. . Runtime / Communication Time on Runtime / Communication Time on the
Application Graph

the Critical Path (with overlap) Critical Path (without overlap)

3-motif mc 52.8ms / 2.4ms 80.7ms / 24.9ms

pt 429.3ms / 144.6ms 556.7ms / 276.0ms

lj 1.86s /0.13s 2.81s / 1.03s

Fr 190.5s / 11.0s 296.6s / 116.4s
5-clique mc 11.1s / 0.017s 11.8s / 0.6s

pt 822.5ms / 171.7ms 938.1ms / 305.0ms

lj 188.6s / 0.56s 197.9s/ 13.4s

Fr 220.3s / 15.0s 343.8s / 138.3s

High Performance Graph Mining Systems 70 alchem.usc.edu

http://alchem.usc.edu

Duplicated Request Merging

. .. Runtime/Communication Volume Runtime/Communication Volume
Application Graph

(with request merging) (without request merging)

3-motif mc 52.8ms / 338.7MB 61.1ms / 623.3MB

pt 429.3ms / 1.8GB 440.6ms / 2.1GB

lj 1.86s / 16.9GB 2.31s/37.8GB

Fr 190.5s / 3.2TB 192.0s / 3.4TB
5-clique mc 11.1s / 12.9GB 18.5s / 281.0GB

pt 822.5ms/ 1.3GB 861.3ms / 1.8GB

lj 188.6s / 79.5GB 223.4s / 3.5TB

Fr 220.3s / 744.7GB 722.0s / 13.9TB

High Performance Graph Mining Systems

71 alchem.usc.edu

http://alchem.usc.edu

Application

3-motif

5-cligue

G

mc

pt

Fr

SW Graph Cache

Runtime / Communication Time on the
Critical Path / Communication Volume
(with cache)

52.8ms/ 2.4ms / 0.34GB 52.3ms/1.7ms/ 0.34GB
429.3ms / 144.6ms / 1.8GB 417.1ms / 126.8ms / 2.0GB
1.86s /0.13s / 16.9GB 1.92s /0.18s / 18.3GB
190.5s / 11.0s / 3.2TB 200.7s/22.5s / 4.2TB
3,005.126s / 1.9s / 829.2GB 4595.6s / 638.5s / 83.2TB
11.1s /0.017s / 12.9GB 11.1s /0.019s / 16.6GB
822.5ms /171.7ms / 1.3GB 855.9ms / 209.5ms / 1.8GB
188.6s / 0.56s / 79.5GB 187.1s / 0.56s / 121.9GB
220.3s / 15.0s / 744.7GB 255.4s / 48.6s / 3.7TB

High Performance Graph Mining Systems 25

Runtime / Communication Time on the Critical
Path / Communication Volume (without cache)

alchem.usc.edu

http://alchem.usc.edu

NUMA-aware Graph Subpartition

Application Graph Runtime with sub-partitioning Runtime without sub-partitioning

3-motif mc 52.8ms 74.5ms
pt 429.3ms 970.5ms
lj 1.86s 3.1s
Fr 190.5s 327.2s
5-clique mc 11.1s 16.1s
pt 822.5ms 2.0s
lj 188.6s 319.8s
Fr 220.3s 447.5s

High Performance Graph Mining Systems

/3 alchem.usc.edu

http://alchem.usc.edu

Scalability: LiveJournal Graph

#Nodes
1
2
4
8

8-node speedup
over 1-node

Triangle
5.5s
2.8s
1.5s
826.8ms

6.65x

3-Motif
12.8s
6.5s
3.4s
1.9s

6.74x

4-Clique
37.6s
19.1s
9.9s
5.3s

7.09x

High Performance Graph Mining Systems

5-Clique
1385.8s
704.7s
361.4s
188.6s

7.35x%

74 alchem.usc.edu

http://alchem.usc.edu

Scalability: Friendster Graph

#Nodes
1
2
4
8

8-node
speedup over
1-node

Triangle 3-Motif
515.3s 1420.8s
257.3s 709.3s
150.4s 364.8s
81.2s 190.5s
6.35x 7.46x

4-Clique
887.6s
494.7s
289.7s
157.9s

5.62x

High Performance Graph Mining Systems

5-Clique
1593.9s
816.7s
421.3s
220.3s

7.24x

75 alchem.usc.edu

http://alchem.usc.edu

Khuzdul: Key Ideas

e Breaking down the vertex-set-
based enumeration process
into smaller operations that
can be expressed with vertex

functions

® Vertex functions transparent

to users, unlike graph
processing—"think like the

vertex”

® The inter-loop dependency
among vertex functions

e Efficient multi-level scheduler
designed for inter-loop
dependency

e Optimizations to reduce data
movements

\
Se=

ﬁﬁﬁ High Performance Graph Mining Systems 26

Graph Mining Compiler

Algorithm Searching
(similar to Automine)

—— Pattern Matching
User-Specified |I~ Process (nested
~ Patterns loops)

\ 4

Pattern Matching Process Expressed by Vertex-Functions

Distributed Runtime
Engine

Execution

Graph Mining Results (e.g., Pattern Counts)

alchem.usc.edu

http://alchem.usc.edu

High Performance
Graph Mining Systems

Xuehai Qian
University of Southern California

' . .
= USCUI]IVCI'SI‘L’_Y of rchitecture Lab for Creative High-performance

S()uthern California nergy-efficient Machines alchem.usc.edu

http://alchem.usc.edu

