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Graphs are Everywhere

 2

• A graph   is represented by its vertices set and edges set E: 

• E is a subset of  ,   iff u and v are connected by an 
edge 

• Graphs naturally capture the relationship between entities in 
different applications

G = (V, E)
V × V (u, v) ∈ E

Chemical compound

Coexpression networks 
[Magwene et al. (2004)]

Protein structure

Social networks 
[Grandjean, M. (2016)]

http://alchem.usc.edu


ALCHEM  
alchem.usc.edu

High Performance Graph Mining Systems

Graph Mining
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• Two graphs   and   are isomorphic 
iff there exists an one-to-one mapping   such 
that   

• An equivalent relation  

• Graph mining: find patterns from a graph 

• Input: a large input graph; a pattern graph 

• Compute: enumerate all the subgraphs isomorphic to 
the given pattern—embeddings 

• Process: gather some information, depending on the 
application 

• We consider two main types: 

• Counting: simply return the count of embeddings 

• Frequent subgraph mining (FSM)

G0 = (V0, E0) G1 = (V1, E1)
f : V0 → V1

(u, v) ∈ E0 ⇔ ( f(u), f(v)) ∈ E1

http://alchem.usc.edu
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Edge/Vertex-induced Subgraphs
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• Edge-induced subgraph 

• For two graphs  ,   
such that   

• Consider edges:  ,  , but 
 —u and v are in g due to other 
edges 

• Vertex-induced subgraph 

• For two graphs  ,   
such that   

• Consider vertices: if two vertices u 
and v are in g, and there is an edge 
between then in G, the edge must be 
also in g

g = (Vg, Eg) G = (V, E)
Vg ⊆ V, Eg ⊆ E

u, v ∈ g (u, v) ∈ G
(u, v) ∉ g

g = (Vg, Eg) G = (V, E)
{(u, v) |u, v ∈ Vg, (u, v) ∈ E} = Eg

0
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2

3Graph G
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1

2

Edge-induced subgraph

0

1

3

Not vertex-induced subgraph

Edge-induced subgraph
Vertex-induced subgraph
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Edge/Vertex-induced Embeddings
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• Vertex-induced embedding 

• The subgraph that is isomorphic to 
a pattern should be a valid vertex-
induced subgraph 

• The count be calculated from 
edge-induced embedding count 

• Example: C(vertex-induced 3-
chain) =C(edge-induced 3-
chain)-3C(edge-induced triangle). 
C=count 

• The #of vertex-induced count of 
3-chain of G (on the 
right)=8-3×2=2
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Edge/Vertex-induced Embeddings
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• For the vertex-set-based method (used in AutoMine*), 
the edge-induced embedding can be calculated with 
minor code modification

1

2

* Daniel Manwhirter, et al. AutoMine: harmonizing high-level abstraction and high performance for graph mining. SOSP’19

Vertex-induced 3-chain

0

1

2
0

N(v): the vertex set containing all neighbors of v
-N(v1): v2 should not connect to v1, otherwise it is  
triangle in the original graph—the 3-chain is not a valid 
vertex-induced subgraph

Edge-induced 3-chain

1

2
0

Remove -N(v1): cover both cases

• In the talk, we consider edge-induced embeddings

http://alchem.usc.edu
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Graph Mining Applications
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• Mining biochemical structures 

• Finding biological conserved subnetworks 

• Finding functional modules 

• Program control flow analysis 

• Intrusion network analysis 

• Mining communication networks 

• Anomaly detection 

• Mining XML structures  

• Building blocks for graph classification, clustering, 
compression, comparison, correlation analysis, and 
indexing 

• …

http://alchem.usc.edu


ALCHEM  
alchem.usc.edu

High Performance Graph Mining Systems

Graph Mining Systems
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• While it is important, it is hard to write graph mining codes 
for various applications 

• Different patterns leads to different algorithms 

• The same algorithm can be implemented in various ways 
with different performance  

• A general graph mining system can offer better 
programmability and high performance 

• Users simply specify the patterns 

• The system chooses the best implementations 

• A typical domain-specific system with similar motivation as 
graph processing systems  

• Graph mining vs. graph computation 

• Graph computation: simple computation, memory bound 

• Graph mining: computational intensive

http://alchem.usc.edu
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• Single-machine systems 

• RStream (OSDI’18) 

• AutoMine (SOSP’19) 

• Peregrine (EuroSys’20) 

• Pangolin (VLDB’20) 

• Kaleido (ICDE’20) 

• Distributed systems 

• Arabesque (SOSP’15) 

• G-Miner (Eurosys’18), G-Thinker (ICDE’20) 

• Fractal (SIGMOD’19) 

• GraphPi (SC’20)

http://alchem.usc.edu
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Teixeira et al. Arabesque: A System for Distributed Graph Mining. SOSP’15

http://alchem.usc.edu
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RStream: Leveraging Relational Algebra  
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Wang et al. RStream: Marrying Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine. OSDI’18

http://alchem.usc.edu
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AutoMine: Compiler-generated  
Pattern Enumeration using Cost Model 
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Mawhirter et al. AutoMine: Harmonizing High-level Abstraction and High Performance for Graph Mining. SOSP’19

Computation Reuse

http://alchem.usc.edu
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Peregrine: Complete Symmetry Breaking
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Jamshidi et al. Peregrine: A Pattern-Aware Graph Mining System. EuroSys’20

0 2

3 41

Pattern Symmetry 
Breaking 

Restrictions

Pattern 
Matching Plan

Pattern Analysis
Input 
Data 

Graph

Pattern Matching

Output (e.g. 
Pattern Count, 

Pattern 
Support)

A Symmetric Pattern

The four embeddings  
are redundant: 
(v0,v1,v2,v3) 
(v2,v1,v0,v3) 
(v2,v3,v0,v1) 
(v0,v3,v2,v1) 
➜ should be only counted 
once

Symmetry breaking:  
add constraints— 
(v0<v2) and (v1<v3) 
➜ only one embedding left

http://alchem.usc.edu
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Pangolin: Application-specific Optimizations 
with flexible APIs
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Chen et al. Pangolin: An Efficient and Flexible Graph Mining System on CPU and GPU. VLDB’20

http://alchem.usc.edu
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• Introduced the restriction set generator 

• Systematically explore various symmetry breaking restrictions 

• Eliminate all redundant computation due to symmetry 

• Replicated distributed execution 

• If the innermost K for-loops are independent, the count is 
calculated mathematically

Shi et al. GraphPi: High Performance Graph Pattern Matching through Effective Redundancy Elimination. SC’20

http://alchem.usc.edu
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Existing Graph Mining Systems
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•Single-machine systems 

• RStream (OSDI’18):  

• Relational algebra based API and implementation 

• AutoMine (SOSP’19):  

• Compiler generated algorithms for pattern enumeration 

• Peregrine (EuroSys’20):  

• Pattern-based programming model enabling pattern-aware optimization 

• Pangolin (VLDB’20): 

• A set of flexible APIs enables powerful pattern-specific optimizations 

• The first graph mining system supporting GPU 

• Kaleido (ICDE’20): 

• Succinct intermediate data representation && faster isomorphism test 

•Distributed systems 

• Arabesque (SOSP’15):  

• Exhaustively check all subgraphs up to the pattern size 

• G-Miner (Eurosys’18), G-Thinker (ICDE’20) 

• Subgraph-centric programming model with partitioned graph 

• Fractal (SIGMOD’19): 

• DFS-based embedding exploration; build-from-scratch paradigm to reduce memory 
footprint 

• GraphPi (SC’20):  

• Search for better symmetry breaking; an mathematical method to speedup counting

http://alchem.usc.edu
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• Observation: all existing systems consider each 
given pattern as a while 

• Empirically, the embedding enumeration cost 
can increase rapidly as the pattern size grows 

• We build a new graph mining system based on 
pattern decomposition*  

• Decompose a target pattern into several 
smaller subpatterns  

• Compute the count of each 

• The results of the target (original pattern) can 
be calculated using the subpattern counts 
with very low additional cost 

• Our project started in Fall 2019, many new 
papers came out in 2020, but fortunately our 
performance is still better than all 

• The importance of algorithm

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17

Execution time of AutoMine 
(our own implementation) on 
EmailEuCore graph. 6-chain  

embeddings is 19,620× compared 
to 3-chain enumeration

http://alchem.usc.edu
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• We explain the algorithm using relational algebra as a mathematical tool 

• The implementation still uses vertex-set-based method 

• A pattern decomposition of pattern graph   is determined by the vertex 
cutting set   

• A subset of  , of which the removal breaks p into K connected components  

• An edge-induced embedding of p can be represented by a  -tuple 
  

•   is the vertex in the embedding (subgraph) that matches the vertex i in 
the pattern graph 

• Each unique embedding corresponds to M tuples due to symmetric 

• We can organize such tuples in a conceptual embedding table

p = (Vp, Ep)
VC

Vp

|Vp |
(v0, v1, v2, . . . , |Vp | − 1)

vi

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17

Input graph

(a,b,c,f,d): a tuple for an embedding of p
(b,a,c,d,f): duplicated tuple

http://alchem.usc.edu
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Counting with Pattern Decomposition
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• The K subpatterns correspond to K embedding tables: 
  

•  : relational join of all   using the columns 
associated with the cutting set   as keys 

• Contains all edge-induced embeddings of the original 
pattern p 

• However,   contains more tuples for two reasons: 

• Symmetric: different tuples represent the same 
embedding—valid embeddings counted multiple times 

• Duplicated elements: embeddings matching the 
subpatterns contain one or more same vertices other 
than for cutting sets—invalid embeddings

T1, T2, . . . , TK

TK+1 T1, T2, . . . , TK
VC

TK+1

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17

http://alchem.usc.edu
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Embedding Tables

 20

Input graph

• However,   contains more tuples for 
two reasons: 

• Symmetric: different tuples 
represent the same embedding—
valid embeddings counted multiple 
times 

• Duplicated element: embeddings 
matching the subpatterns contain 
the same vertices other than for 
cutting sets—invalid embeddings 

•How to eliminate them?

TK+1

http://alchem.usc.edu
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• Generated by shrinking at least two vertices in pattern graph p 
belonging to different subpatterns 

• Specifically construct the patterns that contain duplicated 
elements 

• It is proved that this method can eliminate all invalid tuples* 

• After eliminating embeddings matching shrinkage patterns (invalid), 
handling duplicate tuples (valid counted many times) is easier 

• Divide by multiplicity 

* Ali Pinar, et al. Escape: Efficiently counting all 5-vertex subgraphs. WWW’17

Input graph

http://alchem.usc.edu
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• The answer is NO. It does not guarantee the total 
runtime reduction 

• The combined number of enumerated subpatterns may 
be increased—we did not observe it 

• Some subpatterns after the decomposition may be 
very frequent 

• One of the subpatterns of a size-5 pattern is the 
very frequent 4-loop 

• A performance model is necessary to estimate the cost of 
computation to avoid these cases

http://alchem.usc.edu
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• While the decomposition-based algorithm is known, there 
are several challenges in building a general system 

• Challenge 1: huge algorithm search space 

• A pattern specification typically has multiple patterns 

• 112 patterns for 6-motif; 823 patterns for 7-motif 

• With computation reuse, the mining of these patterns are 
fused together 

• Cutting set for each should be determined jointly  

• Challenge 2: fast and accurate cost estimation 

• Challenge 3: decomposition not compatible with symmetry 
breaking 

• Challenge 4: beyond counting—advanced mining tasks such 
as frequent subgraphs mining (FSM)

http://alchem.usc.edu
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Graph Mining System
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• We build a new graph mining system based on pattern 
decomposition 

• APIs to support various mining tasks 

• Approximate-mining based cost model 

• Efficient decomposition space search 

• Partial symmetry breaking

Compilation 
Program

Application 
Program

D
w

ar
ve

sG
ra

ph
 A

PI

Algorithm 
Generation  

Engine

Compiler 
Backend

Compiler

Runtime  
(Libraries 
for graph 

computing)

Processed  
application  

program

Input 
graph

Results
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• Users provide two programs 

• Application program: specify the major user-defined 
logics 

• Compilation program: specify the patterns to mine and 
invoke the compiler to generate the code 

• APIs—both for convenient use and advanced 
applications: 

• High-level: int get_pattern_count();

• Low-level: partial-embedding-centric model

http://alchem.usc.edu
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• A new model designed for decomposition-based graph mining 

• A partial-embedding matches a subpattern 
• void process_partial_embedding(PartialEmbedding pe, int count);

• Invoked by the system when the partial-embedding pe can be “extended” 
to reach at least one complete embedding of the whole pattern 

• The count indicates how many complete embeddings can be extended 
from the partial-embedding 

• std::vector<Embedding> materialize(PartialEmbedding pe, int num);

• Concretize the first num embeddings of the whole pattern from the partial 
embedding 

• These seem to be arbitrary, what are the system guarantees?

process_partial_embedding is called  
when (1,0,2,*) is identified the * can be  

either 3 or 4. Two ways to reach the whole  
 embedding from the partial embedding: 

count=2 passed as the parameter. 

http://alchem.usc.edu
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• Complete Guarantee: 

• If a partial-embedding   matching a subpattern   is 
passed to process_partial_embedding… 

• Then all other partial embeddings matching   will be also 
passed 

• Coverage Guarantee: 

• The set of subpatterns matched by the passed partial-
embeddings must fully cover all vertices of the pattern graph 

• It is more relaxed than decomposition 

pe Psub

Psub

3

0

1

2 4

http://alchem.usc.edu
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Partial-embedding centric APIs

User programs

Compilation 
program 

Application 
program Pattern counting with  

bounded embedding list

• After processing the whole graph, 
pattern_count contains the total 
number of embeddings of the target 
pattern (before removing multiplicity)
—ensured by the complete guarantee. 

• The materialize function is flexible to 
let users to return a number of 
concrete embedding if needed.  

http://alchem.usc.edu
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• Domain of a pattern vertex: 

• The set of input graph vertices that can map to it 

• Dom(A)={0,1};Dom(B)={0,1,2,3};Dom(C)={0,1,2,3} 

• Support—a metric to quantize the frequency of a pattern 

• We use the minimum image-based (MINI) support definition* 

• MINI support=the size of the smallest domain across all 
pattern vertices 

• MINI support of the 3-chain on the input is |{0,1}|=2. 

• FSM aims to discover frequent patterns 

• The application considers all patterns ≤ a certain size 

• Return a pattern if its support is no less than a user-specified 
threshold

* Bringmann et al. What is frequent in a single graph? PA-KDD’08

http://alchem.usc.edu
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• returned tuple: (1,0,2,*)
• vertex D in 4-chain is 
UNDETERMINED 
— domain[A][1]=1 
— domain[B][0]=1 
— domain[C][2]=1 
• count is not used

• The correctness is ensured by 

• Complete guarantee: all partial-embeddings of a subpattern 
are returned 

• Coverage guarantee: all vertices in the pattern graph are 
covered

http://alchem.usc.edu
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• The users are not aware of the decomposition-based 
algorithm implementation 

• The DwarvesGraph compiler generates the implementations 
based on decomposition  

• The partial-embedding centric model is general 

• The complete embedding can be considered as a special 
case for partial-embedding 

• If the implementation does not use decomposition, our API 
can still work—each embedding matches the complete 
pattern 

• The compiler efficiently generates the procedure explained 
with embedding tables without expensive relational algebra 

• Unlike RStream, which implements relational algebra

http://alchem.usc.edu
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VC is determined  
by the algorithm 

generation engine

Compute the count of each TK with vertex-
set-based method similar to AutoMine 

For each embedding matching the shrinkage 
pattern, we check which partial-embedding 

does it contain. It should be removed from the  
count of each partial-embedding.

Input graph

M/Mi: the number of complete embeddings that 
can be extended from a partial-embedding of 

subpattern(i) before removing invalid ones.

http://alchem.usc.edu
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• The partial-embedding centric model is not tied to the decomposition 

• The complete and coverage guarantee can ensure the correctness 

• The system implementation based on decomposition ensures the stronger 
property: 

• All subpatterns share the cutting set   

• The coverage guarantee just requires all vertices are covered—disjoint 
subpatterns that can cover all vertices also satisfy it—but not 
decomposition method 

• The algorithm we described is a template for the compiler to generate codes 
for the given pattern graph 

• The cutting set determined by algorithm generate engine 

VC

3

0

1

2 4
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• The cost model for algorithm generation engine to 
evaluate different choices of cutting set 

• Efficiently search the cutting sets across multiple 
patterns 

• How to make symmetric breaking work for 
decomposition as much as possible? 

http://alchem.usc.edu
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• We need to quickly evaluate the performance of 
generated subpattern enumeration algorithms  

• Executing of algorithms on real datasets/machines is 
too expensive 

• Pattern enumeration is a set of nested for-loops 

• The key problem: estimate the cost of each loop 

• AutoMine* is the first system that uses a cost model to 
select pattern matching schedules for better performance 

• Problem: its cost model is over-simplified 

• Assumes that the algorithm runs on a random graph 
with n vertices, each vertex pair is connected by a 
fixed probability p 

• For counting k-clique, #iteration of 1st,2nd,3rd,…,k-
th loop are  . With k=5, line 6 is 
should be executed   times 

• Patents graph: n=3.8M, avg_deg=8.76, p= , 
line 5 is estimated to execute   times 

• In reality, Patents graph has 3M 5-cliques, line 5 
executed for   times

n, np, np2, . . . , npk−1

n5p10

2.3 × 10−6

3.28 × 10−24

3M × 5!

Counting k-clique

Mawhirter et al. AutoMine: Harmonizing High-level Abstraction and High Performance for Graph Mining. SOSP’19

http://alchem.usc.edu


ALCHEM  
alchem.usc.edu

High Performance Graph Mining Systems

A New Cost Model

 36

• Key insight: every iteration corresponds to a match of a pattern  

• The problem is converted to the pattern count estimation of the input graph 

• Can be approximate 

• Only need to be relative 

• A new cost model based on approximate graph mining 

• Generate a reduced graph by sampling input graph 

• At most 32M edges 

• Run neighborhood sampling in ASAP* to get the approximation of the patterns up to 
certain size, store the results in table persisted in disk 

• During algorithm search, query the table to get the cost of loop based on the count of 
the corresponding pattern 

• Obtain the count of frequent patterns accurately, while underestimating that of the 
infrequent ones

* Iyer et al. ASAP: Fast, approximate graph pattern mining at scale. OSDI’18

http://alchem.usc.edu
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AutoMine Our Method

http://alchem.usc.edu
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• The graph mining applications need to handle multiple patterns 

• Motif Counting (MC) aims at counting all connected patterns 
with a particular size 

• Need to select a cutting set for each pattern 

• With computation reuse, enumeration of multiple patterns can 
be fused, the search becomes joint 

• We propose the circulant tuning method with fast convergence

P0

Evaluate 
all VC with 
cost model 

C0

P1

Evaluate 
all VC with 
cost model 

C1

P2

Evaluate 
all VC with 
cost model 

C2

Subpatterns

Selected  
cutting sets

Separate Tuning

http://alchem.usc.edu
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P0

Evaluate 
all VC with 
cost model 

C0

P1

Evaluate 
all VC with 
cost model 

C1

P2

Evaluate 
all VC with 
cost model 

C2

Subpatterns

Selected  
cutting sets

Separate Tuning

Circulant Tuning

C00 C10 C20

Fix C1 and C2, evaluate all VC 
candidates for C0 considering 

computation reuse among all patterns  

C01 C10 C20

Fix C0 and C2, evaluate all VC 
candidates for C1 considering 

computation reuse among all patterns  

C01 C11 C20

Fix C0 and C1, evaluate all VC 
candidates for C2 considering 

computation reuse among all patterns  

…….

http://alchem.usc.edu
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• Problem: with symmetry breaking for subpatterns, the 
complete embeddings cannot be correctly joined

Input graph

Symmetry breaking: 
“v2<v1” for p1 
 “v0<v2” for p2

Solution: perform symmetry breaking for 
“subpattern of subpattern” when possible 
and compensate for asymmetric parts

Only applied 
when the gain 
is larger than 
a threshold, 
based on 
cost model. 

http://alchem.usc.edu
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•System:  

• Each node has two 8-core Intel Xeon E5-2630 CPUs (hyperthreading disabled) and 
64GB DRAM 

• GPU (Pangoline): NVIDIA V100 GPU with 32GB memory 

• Arabeque and Fractal (distributed) use 8 nodes. Arabeque uses Hadoop 2.7.7, Fractal 
uses Apache Spark 2.2.0 

• Applications:  

• Motif Counting (MC): count all connected vertex-induced patterns with a particular 
size 

• Pseudo Clique Mining (PC): A vertex-induced pattern is a pseudo clique if the number 
of its edges is no less than  , n is the #vertex and k is a parameter 

• Frequent Subgraph Mining (FSM) 

• Other systems: 

• In-house AutoMine implementation 

• RStream (OSDI’18) 

• Arabesque (SOSP’15) 

• Peregrine (EuroSys’20) 

• Pangoline (CPU/GPU) (VLDB’20) 

• Fractal (SIGMOD’19) 

• GraphPi (SC’20)

n(n − 1)/2 − k

Graph datasets

http://alchem.usc.edu
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Comparing with  
AutoMine, RStream, and Arabesque
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Graph datasets

http://alchem.usc.edu
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Comparing with 
Peregrine, Pangolin, and Fractal
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Graph datasets

Pangolin’s GPU performance is competitive, but 
achieved with a significantly more expensive 
device (NVIDIA V100-32GB).

http://alchem.usc.edu
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Graph datasets

GraphPi only handles the individual pattern and 
does not support FSM

http://alchem.usc.edu
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Decomposition Space Search Methods
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R: random; S: separate tuning; C: circulant tuning
RT: runtime; ST: search time

Circulant tuning is slower 
than separate tuning

Circulant tuning achieves 
up to 1.57x speedup. 
For large graph, the 
benefit is more and 
search time can be 

amortized.

http://alchem.usc.edu
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Partial Symmetry Breaking and 
Decomposition
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p0 — p19 are all size-5 patterns except for 5-clique

http://alchem.usc.edu
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Large Graphs and Large Patterns
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k-CHM: k-chain mining 
Keep increasing the size of the pattern until the task cannot 
finish within 24 hours

None of the previous exact graph mining systems have reported 
4-motif results on graphs at this scale

http://alchem.usc.edu
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DwarvesGraph: A Decomposition-based 
Graph Mining System
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• We build a new graph mining system based on pattern decomposition 

• APIs to support various mining tasks 

• Approximate-mining based cost model 

• Efficient decomposition space search 

• Partial symmetry breaking 

• The results show that our system is faster than all existing systems 
and can likely scale to large patterns
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Why Distributed Graph Mining System?
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• Single-machine shared memory systems (Peregrine, Pangolin, 
AutoMine,DwarvesGraph) 

• Both #cores and amount of memory is limited to one machine 

• Single-machine out-of-core systems (RStream) 

• Scale to large graph with external storage 

• #cores is still limited to one machine 

• Sacrifice efficiency: to fully utilize disk bandwidth, a less efficient 
algorithm with graph streaming and relational join—much slower 
than recent systems 

• Distributed systems with graph replication (Arabesque, Fractal, 
GraphPi) 

• The complete graph data replicated in each machine  

• Scaling #cores, but not memory  

• Distributed systems with graph partition (G-Miner, G-Thinker) 

• Both #cores and amount of memory can scale 

• Current systems sacrifice efficiency and programmability 
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Graph Mining Systems with Graph Partition
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• Poor programmability: complicated task-based subgraph-centric 
model 

• Users responsible for dividing the enumeration process into a number 
of subgraph-centric tasks 

• Each task: users specify the subgraph containing all data needed 

• Example: clique, task—“counting the number of k-cliques 
containing a given vertex”, subgraph—an induced subgraph 
including all 1-hope neighbors of the vertex 

• Users need to handle system problems such as stragglers 

• Inefficient system for communication/computation scheduling 

• Reference-counting based SW cache with GC for fetched remote data 

• Triangle counting on Patents dataset (3.8M vertices) 

• G-Thinker (8 nodes: 16 cores each, 128 cores in total): 285.3s 

• A simple single-thread implementation (reported in AutoMine): 
6.2s 

• Peregrine with 16 cores single machine: 1.1s
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Goals & Problems
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• Khuzdul: A distributed graph mining system with graph 
partition with simple programming interface and high 
performance 

• Problem 1: Can users just specify the patterns without 
considering all other system issues? 

• Problem 2: How to efficiently control scheduling of 
computation and communication? 

• Problem 3: How to achieve efficient implementation?
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Khuzdul: Key Ideas
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• Breaking down the vertex-set-
based enumeration process 
into smaller operations that 
can be expressed with vertex 
functions 

• Vertex functions transparent 
to users, unlike graph 
processing—“think like the 
vertex” 

• The inter-loop dependency 
among vertex functions 

• Efficient multi-level scheduler 
designed for inter-loop 
dependency 

• Optimizations to reduce data 
movements
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Inter-loop Dependent Vertex Function
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v0 v1

v2 v2’

v3

S0=intersect(N(v0),N(v1))
S1=intersect(S0,N(v2))

v0 v1

v2 v2’

data_dependency_1

process_v_1 
(computation)

Level 0
Level 1

Level 0 ➜ Level 1

v0 v1

v2 v2’

v3

Level 1

Level 2

data_dependency_2

Level 1 ➜ Level 2

process_v_2 
(computation)
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Inter-loop Dependent Vertex Function
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• We can illustrate the idea conceptually with Python-like 
pseudocode  
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Inter-loop Dependent Vertex Function
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• Our system generates C++ codes based on the user-
specified patterns

Inter-loop data 
dependence

Level 0 ➜ Level 1
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Abstract Execution Model
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The execution of a vertex-
function may trigger new 
vertex-functions in the next 
loop level (in the algorithm).

consume item

produce  
new item

How to pick up the next 
vertex-function determines the  
concrete execution model. 
FIFO: breadth-first schedule 
FILO: depth-first schedule 
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Problems of Conventional Scheduler
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• FIFO (BFS) 

• Memory fragmentation 😫 

• High overhead 😫 

• Communication batching and overlapping with computation 😁 

• FILO (DFS) 

• No effective communication batching and communication/computation overlapping 😫

BFS Scheduling 

DFS Scheduling 
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Multi-level Scheduler
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•Same level 

• Communication batching and overlapping with computation 

• Shuffle the vertex functions into different groups, each group only fetches the data from 
one node 

• Each vertex function only accesses the neighbors of a given vertex—all in one node 

•Different level 

• Avoid memory fragmentation and reference counting

Vertex function life time
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Reducing Communication with SW Cache
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Communication Merging 
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• Efficient hash-table based implementation that allows 
false negative in merging 
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NUMA Subpartition
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• Each NUMA socket maintains an execution engine 

• All the buffers of this engine (e.g., fetched graph data, 
workspace buffer) are NUMA-local  

• Avoid expensive cross-socket memory accesses
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Khuzdul Evaluation
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•System:  

• Each node has two 8-core Intel Xeon E5-2630 CPUs 
(hyperthreading disabled) and 64GB DRAM 

• Network: 56GBps InfiniBand 

• Applications: triangle, 3-motif, 4-clique, 5-clique 

• Single-machine systems 

• In-house AutoMine implementation 

• Peregrine (EuroSys’20) 

• Pangoline (CPU/GPU) (VLDB’20) 

•Distributed Systems 

• Partitioned graph: G-thinker (ICDE’20) 

• Replicated graph: GraphPi (SC’20)
Graph datasets
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Comparing with G-Thinker: Partitioned Graph  
Triangle Counting
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Comparing with GraphPi: Replicated Graph 

 64

http://alchem.usc.edu


ALCHEM  
alchem.usc.edu

High Performance Graph Mining Systems

Comparing with GraphPi: Replicated Graph 
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Comparing with Single-Machine Systems
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Comparing with Single-Machine Systems
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Comparing with Single-Machine Systems
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Comparing with Single-Machine Systems
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Communication/Computation Overlapping
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Duplicated Request Merging
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SW Graph Cache
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NUMA-aware Graph Subpartition 
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Scalability: LiveJournal Graph
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Scalability: Friendster Graph
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Khuzdul: Key Ideas
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• Breaking down the vertex-set-
based enumeration process 
into smaller operations that 
can be expressed with vertex 
functions 

• Vertex functions transparent 
to users, unlike graph 
processing—“think like the 
vertex” 

• The inter-loop dependency 
among vertex functions 

• Efficient multi-level scheduler 
designed for inter-loop 
dependency 

• Optimizations to reduce data 
movements
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