Julian Shun: Alright everyone, welcome to the fast code seminar. So today, I'm very happy to have Michael Bender as our speaker.

Julian Shun: Michael is the David Smith leading scholar of computer science at Stony Brook University and his research spans data structures, algorithms, efficient computing, parallel computing, and scheduling, and he's co-authored many papers on these topics.

Julian Shun: He's received many awards for his excellent contributions, both in research and also in teaching, including an R & D 100 award, a test of time award.

Julian Shun: Two best paper award and five awards for graduate and undergraduate teaching. Michael was the founder and chief scientist at Tokyo tuck and enterprise database company, which was acquired by

Julian Shun: Michael’s also held visiting scientist positions at MIT and King's College London.

Julian Shun: Michael received his bachelor's in applied math from Harvard and add a computer science from Ian's and Leo and France, and he completed his PhD on scheduling algorithms from Harvard.

Julian Shun: And today, Michael's going to tell us about his work on filters and he's going to talk about many filters, including Bloom filters, quotient, and cuckoo filters. So I'll turn it over to you, Michael.

Michael Bender: Great. Thank you so much. It's really great to be here and also looking at the names of, you know, people coming in and it's really nice to see friends who I haven't spoken to in a long time. And so I'd love to catch up.

Michael Bender: Afterwards, so thanks again. Um, so this is the advertised talk title filters.
Michael Bender: And this is a slightly longer title. Oops, which is time to change your filter.

Michael Bender: And this title is more to the point, but I'll explain why give a little more explanation why later.

Michael Bender: But to begin in order to explain what I mean by a filter, I have to say to say what's the filter. I actually need to say, first of all, what's a dictionary.

Michael Bender: And the dictionary data structure maintain some set es from the university use. So in this picture. The set is elements AMC in the universe is a, b, c, d.

Michael Bender: So if we ask is a member of the set. Well, there's a yes it is a member of the set is be a member of the set know be is not a member of the set is see a member of the set. Yes, he's a member of the set is the number this that know

Michael Bender: The dictionary supports membership queries on some potentially dynamically changing set

Michael Bender: And a filter is just an approximate dictionary. So yeah, so filter data structure. It's that approximate dictionary. And so, it supports approximate membership queries on the set.

Michael Bender: So here we've got is a in the set. Yes, is be in the set. No be is not in the set, you see in the set. Yes, he is in the set is d in the set. Well, D is not in the set.

Michael Bender: But here the filter makes a mistake. It has a false positive. And so it erroneously says yes theist in the set.
Michael Bender: So this is an approximate dictionary, because it's allowed to make some mistakes. It turns out it's only allowed to make false positives as I'll explain later, it doesn't make false positives and false negatives.

Michael Bender: So this is a filter data structure. It's an approximate that membership query data structure on some set S.

Michael Bender: And so just said to a filter guarantees some false positive rate ϵ.

Michael Bender: And so what that means is that if you query for some element that is actually in your dictionary, then you have to return. Yes. With probability one. So this is a true positive, but if the query element is not in the set. Most of the time you have to say no. So with probability one minus ϵ, you have to say no. And these are negatives but you are allowed to have some bounded probability of having false positives.

Michael Bender: Right, so this is so, so this is the false positive rate. And as I said before, this is, you know, these are one sided errors.

Michael Bender: Okay, so this is why I'm filter guarantees of false or not. Why, but that the filter guarantees some bounded false positive rate ϵ.

Okay.

Michael Bender: Um, so the reason why we want this false positive rate ϵ is because we want the data structure to be really compact. So if you're storing an entire dictionary. It could be very large. And this is a picture this whale supposed to be a large dictionary for the space.

Michael Bender: Is sort of omega of end times log of the universe size where the filter. If you have a reasonable false positive rate, then the filter is going to be much tinier. And so that's the advantage. It allows the false positive rate is the false positive rate allows the filter to be more compact.

Okay.
Michael Bender: So the point, whatever.

32 00:05:22.710 --> 00:05:24.180
Charles Leiserson: This thing question.

33 00:05:24.390 --> 00:05:25.740
Michael Bender: This is Charlie. Oh, good. Yeah.

34 00:05:27.090 --> 00:05:33.360
Charles Leiserson: I didn't quite understand the space over which the randomness is occurring. If you have the same element will it fail.

35 00:05:34.560 --> 00:05:41.250
Charles Leiserson: Twice, or is it something that's random over over you know the particular query or whatever.

36 00:05:42.090 --> 00:05:44.760
Michael Bender: So that is a fantastically good question.

37 00:05:47.100 --> 00:05:50.880
Michael Bender: And so here I'm purposely being a little vague.

38 00:05:51.930 --> 00:05:52.980
Michael Bender: But in fact,

39 00:05:53.040 --> 00:06:09.690
Michael Bender: A couple of years ago, we had a false positive. We had a fox paper, which was basically answering exactly this question I've been going back one slide to the false positive rate where we actually made a data structure that didn't make it where even if you have repeats. You still

40 00:06:11.280 --> 00:06:24.240
Michael Bender: Have the same false false positive rate of epsilon, but with most filters that are not adaptive that's not the case. And so I'm being a little bit vague about this and if you read filter papers.

41 00:06:24.810 --> 00:06:36.180
Michael Bender: People are often a little bit vague about whether this is for random queries or whether it's for a specific query or whether it's like sort of an epsilon false positive rate for every query in the stream.

42 00:06:37.140 --> 00:06:52.560
Michael Bender: And so you can do it for every query in the stream, but I'm not really going to go there. So I'm just saying. For now, let's think about it as one particular query, but that's a
really, really good question. Charles and sort of one of the things that I'm actually most excited about the filters.

So,

Michael Bender: Oh, I should say one more thing, which is I find the lack of personal bank interaction and bought and the lack of actually having body language.

Michael Bender: Visible, I find that very disturbing. So the more questions, and the more interaction. I can have, the better. So like if I tell a joke. And if the joke happens to be funny, then definitely like snap into action and unmute your microphone. LAUGH And then muted again like anything for the interaction.

Michael Bender: Between very grateful.

David Reed: So, so Michael since you invited. This is David Reed.

Michael Bender: Yeah, you bet.

David Reed: You're, you're also assuming, and I don't know whether it's an essential assumption that there is a stream.

David Reed: As opposed to, say, just a one shot query and there will never be one or maybe something that's not as structured as a stream.

David Reed: You know when you said stream. Well, maybe.

David Reed: You know the ordering matters or doesn't matter in terms of, you know, filters, like I assume you're trying to be general but but do you
Michael Bender: So right now I'm sort of finessing the issue in the sense, I'm saying it.

Michael Bender: Could be one query like

Michael Bender: For the, for the moment, it probably makes sense to think about just the single query.

Michael Bender: And and we want these guarantees for a single query, but the point that Charles brings up is

Michael Bender: That like you can imagine that you have an adversary that asks a query. And then based on the results of that query asks another query and based on the results of that query asks another query.

Michael Bender: And so ideally you want to filter that can do all of that. And in fact, you can. And I'll give you the citation. A little bit later in the talk.

Michael Bender: But I think, for the moment, it makes sense to think about just a single query like how do you make the filter so that so that if whatever query the adversary asks you can answer it. Does that make

David Reed: Sense. Yeah, it makes sense. It's just that I'm interested in the order dependent queries.

Michael Bender: Piece. Oh, I'm happy, I'm so, so I'm happy to. So I'm happy to go there. Uh, you know, later and give you much more detail about that because I can wax eloquent about that for hours.

Michael Bender: Right. So, and I'm happy to talk more about that afterwards.

Michael Bender: And if there's time afterwards. Sort of. Sort of wedge in and tell you the piece where the order dependence comes into play.
Michael Bender: So, um, so these are really this is these are not. These are great questions. And it's you've touched upon something that I'm very excited about it wasn't what I the questions that I expected to get but I'm very happy to get them.

66 00:09:46.410 --> 00:09:53.760
Michael Bender: I guess before going on. I should say here with like this is a picture of a filter right here because it's a CNN Money. That's a filter.

67 00:09:54.810 --> 00:10:05.850
Michael Bender: So it's a filter feeder. So originally I had a dictionary. That was a humpback whale, but then that would also be a filter feeders. So I changed it to a sperm whale, which is not that's

68 00:10:06.450 --> 00:10:13.530
Michael Bender: Unnecessary knowledge. Okay, so let's talk about the talk, so far, which is I described the filter data structure. And we also

69 00:10:13.770 --> 00:10:15.000
Michael Bender: Aha, about

70 00:10:15.150 --> 00:10:17.730
Michael Bender: Adaptive look. Thank you.

71 00:10:18.930 --> 00:10:20.070
Michael Bender: Then we talked about

72 00:10:23.490 --> 00:10:26.730
Michael Bender: Adaptive versus non adaptive filter data structures.

73 00:10:27.750 --> 00:10:36.570
Michael Bender: And now I'm going to talk about the Bloom filter, which is by far the most common data structure. Here's a cartoon of a of a filter that I found on the internet.

74 00:10:37.740 --> 00:10:48.420
Michael Bender: Air Conditioner filter, I guess. So this is a classic Bloom filter and a Bloom filter is just a bit array and some number of K hash functions. And here I'm going to say that cash does too.

75 00:10:49.440 --> 00:10:58.710
Michael Bender: And so this is what a Bloom filter looks like when the set is the empty set. And if I add some element a to the set we Bloom filter works is

76 00:11:00.600 --> 00:11:18.660
Michael Bender: A gets hashed with each of these hash functions and in this picture here. The first hash function hash is a two positions 01 and the second hash function hashes eight positions 0123 and so the bits in these two positions gets flipped from zero to one.

Michael Bender: And then just another picture. Say we hash and say we add see to this set S. And so now see gets hash to position 012345 with this first hash function and 01234 the second hash function. And so those bits also get flipped to one. Notice that this a

Michael Bender: Bit in the position 0123 was already at one. And so, it states that one. And so this is how you insert elements into Bloom filter when you've got these hash functions. These K hash functions.

Michael Bender: And but but the key hash functions is just how you build the Bloom filter. So this is ultimately what it looks like it's just a bit array.

Michael Bender: And so now if we want to ask a query. So here, this is a

Michael Bender: You know that the query for whether be is a member of the set. And so you hash be and this first hash function gets hashtag position 012

Michael Bender: Which is zero and the second one gets hashtag position 012345 which is one. But because this is the zero. We know that be is not in the set, because it be we're in the set. Both of these would already be ones.

Michael Bender: And so when you query is being set, then your filter says no, it's not. And again, since you can't really see my face. I decided that I was going to have my talk with a lot of other cartoon faces. So I hope I spent

Michael Bender: I spent an embarrassingly large amount of time drawing eyes and smiley faces. So hopefully you'll appreciate it and this is my cartoon figure

Michael Bender: Right, even

Michael Bender: Sort of afterwards edited the eyes to be to be facing the right direction.
Michael Bender: Okay, so this is a query for

Michael Bender: For some whether be is in the set. So you query whether D is in the set. So now, D. Get attached to position 0123 and position 012 both of these

Michael Bender: Are hash to ones. And so for the answer to the query is is the in the set. Well, the filter says yes, it's in the set, but this is a false positive, because he is not in the set. And in fact, those ones were flipped because of

Michael Bender: Other elements. And so this is why the Bloom filter allows for false positives.

Michael Bender: I should point out that Bloom filters don't support deletes and the issue on delete is it's hard to tell which ones get detrimental because suppose that we decide to delete some elements. See, so C gets hash to

Michael Bender: This position here and this position here if we remove see do we document those back down to zero, or do they have to stay one because there's some other element that's hashing to them.

Michael Bender: So that's why Bloom filters support insertions and queries, but they don't support the leads, because just from looking, you can't tell whether we should be deleting whether we should be documenting those ones or keeping them as ones.

Michael Bender: Okay, so this is what a Bloom filter is

Michael Bender: And so let's talk about the space usage, the space usage of a of a well-tuned Bloom filter is like what, like a little bit more than 1.44 times log of one over the epsilon bits per element.
Michael Bender: You know you can plug in some values of false positive rate and the number of bits that you need. But basically, a common rule of thumb.

Michael Bender: Is that if you're using a filter you kind of want about one byte of space for element that's how much space do you want to dedicate to you to your allocate to your filter.

Michael Bender: Okay, so this is base usage.

Michael Bender: Bloom filters are ubiquitous like they appear all over the place. At first, that when I was making the slide. I was wondering if I should put in citations.

Michael Bender: But then I looked at, you know, the number of citations that there are for Bloom filters and it would. It's like, citing calculus. It's just, it's just one you don't need to put a citation for Calculus. It's just one of the tools that is in every system builders toolbox, along with a relatively small number of other data structures, you know, hash tables balance trees, the trees.

Michael Bender: I would say Bloom filters right up there in terms of importance. It's just one of the most important data structures that you need to know when you're building a system.

Michael Bender: Okay and I, which I guess I should also say, which is why, given how important it is and system building. I always find it a little bit surprising that it is under emphasized and algorithms classes, even though it's just really beautiful data structure and very powerful and very useful.

Michael Bender: Okay.

Michael Bender: So talk so far I've decided

Charles Leiserson: Books and algorithms suck.

Michael Bender: Let's just say
Michael Bender: Um, there's a lot of stuff to do in algorithms textbooks. Like, I can't imagine ever wanting to write one.

David Reed: This is David read again.

David Reed: I can say that as an operating system guy for a large part of my career.

David Reed: I don't know of any operating system that has a Bloom filter and it's Colonel, which is sad.

Michael Bender: Really, I'm actually surprised about that because, you know, when I talk about, you know, a lot of systems, researchers that interact with. They say, oh, I know we can improve performance by putting a filter here doing this and and making the data cache more efficiently. Um, but

Michael Bender: I'll talk about some other places where filters are used in storage systems.

Michael Bender: But okay, so, um, so I've described filters the Bloom filter. And now I'm going to talk about how filters are used.

Michael Bender: And

Michael Bender: I guess the cartoon on the right. This is a filter with coffee runs right through me. It's not exactly opposite to the talk but I enjoyed it enough to paste it in

Michael Bender: So let's talk about how filters are used.

Michael Bender: So the most common use of a filter.
Michael Bender: Is to filter out queries to some large remote dictionary. And so here I've got a picture of some large remote dictionary say it's on you know either across the network or on disk. And then here, we've got the filter that's in RAM.

121 00:18:17.610 --> 00:18:20.580
Michael Bender: And these are a bunch of queries to the dictionary.

122 00:18:21.780 --> 00:18:33.420
Michael Bender: And so you so you query. A the filter says no, it's an addiction or you query be it's not in the dictionary or Corey see it says the filter says yes it is in the dictionary. Turns out the see wasn't the dictionary. So that was, that was a good answer.

123 00:18:33.990 --> 00:18:44.400
Michael Bender: D. It's not an dictionary. Well, there's a false positive efforts, not in the dictionary. So the point is that accessing this large remote dictionary is very, very expensive.

124 00:18:45.150 --> 00:19:05.610
Michael Bender: And if you can store the filter and ram or and just much quickly get filter out all of these negative queries, then you get a big performance boost and this isn't the only use of a filter, but at least in my experience, it's the overwhelming. The most common use of a filter.

125 00:19:07.080 --> 00:19:14.250
Michael Bender: I'm going to say the same thing. Two more times than two different ways. So this is the first way which is I'll talk about the speed up from the filter.

126 00:19:15.030 --> 00:19:24.240
Michael Bender: So, so you've got a workload with P positive queries and and negative quarter. So p queries for elements that are in your set and and negative quarries for elements that are not in your set

127 00:19:25.200 --> 00:19:36.480
Michael Bender: So if you have a dictionary without some sort of filter like without a boom filter, then you need p plus in remote accesses to the dictionary.

128 00:19:36.960 --> 00:19:46.710
Michael Bender: Whereas if you have a filter, then you have what you still need to do all your positive queries, but you only need to do an epsilon fraction of your

129 00:19:47.520 --> 00:19:59.220
Michael Bender: Negative queries and the rest of them just get filtered out. So here I've said the speed up in a different way, which is, it seems not to do anything from positive queries, but it helps negative queries a lot

130 00:20:00.420 --> 00:20:01.320
Michael Bender: But actually,

131 00:20:05.730 --> 00:20:21.030
Michael Bender: Filters are even better than that in a lot of ways. So let me talk about a how filters help queries in a kind of data structure called a log structured merge tree. I'm not going to really say what a log structured merge tree is because for the purpose of this talk. It doesn't matter.

132 00:20:22.050 --> 00:20:28.800
Michael Bender: But so basically a log structured merge streets supports fast, very, very fast insertions.

133 00:20:29.460 --> 00:20:34.980
Michael Bender: And it does this by partitioning one big data structure into a bunch of independent data structures.

134 00:20:35.370 --> 00:20:47.100
Michael Bender: And independent dictionaries and some having one big dictionary that you query, you've got a bunch of little or dictionaries and that's this picture that I've shown you here the dictionaries are exponentially increasing in size.

135 00:20:47.790 --> 00:20:53.520
Michael Bender: And so suppose that I want to query whether some element is is in my set and when a query be

136 00:20:54.540 --> 00:20:55.050
Michael Bender: And so

137 00:20:56.400 --> 00:21:02.460
Michael Bender: You're in luck search and merge tree. You're not just doing one query, but you do need to query for each of these little pieces.

138 00:21:04.920 --> 00:21:14.730
Michael Bender: And so well in this picture you query be the filter says no, you can't be the filter says no, you can't be the filter says yes. Maybe that was a false positive be

139 00:21:15.030 --> 00:21:18.990
Michael Bender: Aquarius know. So the point is that in the log structured merge tree.

140 00:21:19.350 --> 00:21:26.970
Michael Bender: Even if you're querying for an element that is somewhere in this log structured merge tree, the filter still saves on performance.

141 00:21:27.210 --> 00:21:37.470
Michael Bender: Because you've got these smaller dictionaries, where even if you've got one false positive in the big dictionary. You still got a lot of false negatives in these smaller pieces. So filters really

 00:21:37.950 --> 00:21:42.840
Michael Bender: Are are very powerful and help a lot. And this is just one example with the log structured emerge tree.

 00:21:44.760 --> 00:21:45.390
Michael Bender: Alright.

 00:21:47.040 --> 00:21:56.610
Michael Bender: So here's the talk so far. Let's see. I've talked about filters. I've talked about the Bloom filter it said how they are used. And now it's time to motivate

 00:21:56.970 --> 00:22:12.300
Michael Bender: The title or the second very title of my talk, which is that it's time to change your filter. And here's a cartoon. So there's Darth Vader, he was preparing for a big date and your he's got his air filters and areas is changing and filter.

 00:22:13.980 --> 00:22:21.180
Michael Bender: So, now is the time to put your put your finger on the mute button and laugh and then unmute again. So I really liked

 00:22:21.360 --> 00:22:22.770
Michael Bender: It again it's not relevant.

 00:22:22.830 --> 00:22:23.790
Michael Bender: But I like that to

 00:22:23.820 --> 00:22:26.400
Michael Bender: That slide too much not to include it.

Michael Bender: Okay. Um, so

 00:22:33.750 --> 00:22:39.840
Michael Bender: Applications must work around the limited capabilities of a filter.

 00:22:43.320 --> 00:22:46.410
Michael Bender: So let's talk about some of the limitations. I've already said one of
Michael Bender: Them, which is that you can't delete. And so one of the workarounds is if you need to do a lot of deleting is you need to rebuild your filter from scratch.

Michael Bender: There's also no resizing. And so what that means is you somehow have to guess.

Michael Bender: How many elements, your filters ultimately going to have and you have to rebuild. If you're wrong. And that's why, even a couple slides ago, I talked about this filter that is all zeros. It's not a very you know that that was not a very compact filter.

Michael Bender: So filters also don't support or Bloom filters don't support merging or enumeration developments. So, suppose if that two separate

Michael Bender: Filters, and I want to merge them together into one filter. So a boom filter does not do that efficiently. But that turns out to be a very common and useful operation. And certainly that's something that I've required in my work.

Michael Bender: And finally there no values associated with keys that lots of times you

Michael Bender: You don't just want to have a filter, but you might want to store a small amount of information associated with every element, make some color or something and a filter does a Bloom filter doesn't do that.

Michael Bender: And so you have to combine with some other data structure to get this capability that you want. So the bottom line is that

Michael Bender: Boom filter limitations increase system complexity, they waste space and they slow down application performance and all of these are things that in my own research I've needed and haven't been able to get with a Bloom filter.

Michael Bender: They also have suboptimal ass and tonics

Michael Bender: In the sense that a Bloom filter has like this extra sort of 1.44
Michael Bender: Times, and I'm like, log of one over the false positive rate, but you can do better.

Michael Bender: Bloom filters CPU cost is also suboptimal like it's a function of the false positive rate, but you can get it down to constant.

Michael Bender: And finally, Bloom filters don't have good data locality, because these hash functions are hashing all over the place. And if you've got eight, you know, H different hash functions that a different place in your data structure, you don't have good data locality and you and you can get better data locality.

Michael Bender: So again, just repeat Bloom filter limitations increase the system complexity, they waste space they sold on application performance and they're not necessary. And that's what I'll be talking about in the rest of the talk.

Michael Bender: Okay, so there's tons of research on extending or improving a replacing a Bloom filters and like this is this is such a partial list. I just sort of pasted some stuff down, but this is very far from complete and

Michael Bender: The I guess the point is when there's too much stuff growing on top of your filter, like, well, it's time to change your filter. I

Michael Bender: I decided not to put in a picture illustrating this point.

Michael Bender: Which I'm sure. Thank you. Sure that people will

Michael Bender: Appreciate the lack of illustration, there

Michael Bender: Okay, so talk so far, so it's time to change your filter is the talk title. And again, this is another picture.
Michael Bender: Sort of, I see that you change your filter about as often as you change your mind wasn't as good as the Darth Vader Vader filter. But it was good enough that I wanted to include it.

Michael Bender: Okay, so it took me a while, actually, to figure out what the message of this talk was going to be, and in fact, one of the messages that I could have chosen and opted against was the questions, sort of based on Charles and David, which is how do you make a filter. That's actually adaptive and and I'd love to talk to both of you about that. Afterwards more so the bottom line is I couldn't find the right talk title. And then I received this email which you know from some company filters fast, which says it's time to change your filter. And of course it was email. So I snapped into action and ignored it. But it turns out I was getting a whole bunch of emails.

Michael Bender: And of course it was email. So I snapped into action and ignored it. But it turns out I was getting a whole bunch of emails.

Michael Bender: Like the whole universe was basically telling me the title of my talk. Have you forgotten to change your filter. Have you forgotten to change your filter. Have you forgotten to change your filter. You know, and then you know you want to perform better. You want filters fast and you know for a

Michael Bender: Remote talk is a home filter club. So there's a whole universe was trying to tell me what this talk was about. And at some point, I actually paid attention to it. And that's why, that's why I made decided to make this the message of the talk.
Michael Bender: So, if this is a message of the talk, then I also want to talk to have some heroes and so again talk. It's time to change your filter and I kind of want this talk to be a tutorial like introduction to filters. As well as general techniques for solving FILTER PROBLEMS. And so, you know, yes. I'm going to talk about my work. But I also want this to be explaining something about a field as well. And so these are the three heroes of the talk. So this is the first year, which, and I'll explain all of them. So the sort of three heroes. One of them is fingerprinting. And one of them is quotient thing. And one of them is collision resolution, and I'll explain what these are, in the next couple slides. But just to say something about these icons, which, again, I'm a little bit embarrassed about how much time I spent on them and I'm not gonna let you know. But I was sort of proud defined the fingerprinting icon, where I could make the world the nose and so that I worked hard on I guess people that people recognize this face. Yeah, so this is Knuth, and because he's he's one of the first people who wrote about and propose this technique that I'll talk about and the people recognize this third face. Yeah, so this is Knuth, and because he's he's one of the first people who wrote about and propose this technique that I'll talk about and the people recognize this third face.
Michael Bender: It turns out this is a mistake in the icon, because this is collision resolution and not collusion resolution.

Michael Bender: So I change the icon. So this is the new icon for collision.

Michael Bender: I think with these three techniques. It explains a lot of how you go about understanding lots of different filters in the literature. So to begin, let me talk about the first one and this is fingerprinting.

Michael Bender: So in fingerprinting, you have describe how to make a filter from some set. So here's we've got some set S which is the dictionary.

Michael Bender: And in the filter. What you do is you take a fingerprint of every element in the set.

Michael Bender: And because these are Fingerprints of the elements, rather than the original elements. Turns out we can store them more compact than you can with a Bloom filter, and I'll explain why in a couple of slides. But the point here is just that you can

Michael Bender: And so now, since you're storing instead of you're storing the elements in the dictionary and the fingerprints of the elements in the filter. It turns out that the filter is just another dictionary, but a smaller one. Right. So it's just, it's also a dictionary, just a more compact one.
Michael Bender: Okay, so now

Michael Bender: If we want to query in the dictionary. So is \(x \), you know, a member of the set. Well, we look in the filter. And if we're storing the fingerprint.

Michael Bender: In the filter than we'd say yes. And if the fingerprint is not in the filter than we say no.

Michael Bender: And this is the only source of false positives. And again, I don't know why I keep repeating this but this can be stored more capacity than a Bloomfield, dark, as I'll explain in a second.

Michael Bender: So again, the way you query is just if the fingerprints there, you say yes, but the fingerprints not there, you say no.

Michael Bender: So,

Michael Bender: Fingerprint collisions are the only source of false positives. So this is just to analyze the false. What I'm going to do next is analyze the

Michael Bender: The error rate and what the source of the false positives is from these fingerprints. But the point is that fingerprint collisions are the only source of false positives. So what I mean by that is if some fingerprint is like if

Michael Bender: The fingerprint of why is stored in our filter. We say yes, but why is it false positive. If sort of why is not in the sad, but there's some other element \(x \) that is in the set.

Michael Bender: That shares the same fingerprint with why

Michael Bender: So then we have got a false positive, because why and some element in the second half collided. And this is the only source of false positives.
Michael Bender: Okay, so now what I wanted to do, given that we have this, you know, to explain where the source of false positives. It is that if these hash collisions.

Michael Bender: Um, let's start to analyze how big we need to make the fingerprints. So here we've got some element x and we hash, you know, to get some fingerprint ah of x. And it's going to, we're going to require $\log n$ divided by the false positive rate bits.

Michael Bender: And just to do the analysis, the probability that

Two elements collide, that, you know, some x and y collide is is one half.

Michael Bender: You know, or one over to to the number of bits in the fingerprint, which is epsilon divided by n. So that's the probability of any one collision.

And so the probability that some element that is not in the set is a false positive, just by the union bound is n, the number of elements in the set and times excellent overhead, which is excellent. So that's where this false positive rate comes from

And so we see that to get a false positive rate of epsilon

We want to have $\log n$ divided by epsilon bits.

Michael Bender: Okay. And so now what I need to do is explain that these can be stored compact Lee so naively, we would need $\log n$ divided by epsilon bits per element. But in fact, you can actually store using only $\log n$ divided by epsilon plus some constant bits per element. So we don't want this end there. We want to turn this end into a one. Bye bye.

With efficient encoding and that's where the second hero comes in. So we, the first year was fingerprinting with just explained the second year was coaching thing which I'm going to explain now.
Michael Bender: And by the way,

Michael Bender: As much as I enjoy listening to myself talk. I still do want to have questions because I enjoy listening to other people talk more. So

Michael Bender: Yeah.

Julian Shun: I had a question on the previous slide.

Julian Shun: Okay, do you assume here at is

Julian Shun: Fixed or is it is a changing as you do operations on your

Michael Bender: That's a great question.

Michael Bender: I think that we should assume that end is sort of a fixed upper bound on the number of elements.

Michael Bender: I think there's lots of cool

Michael Bender: Work to be done, which I'm sort of excited about about about what happens when n

Michael Bender: Is changing. And there are some recent papers on this, but I still think that it's an open area.

Michael Bender: So,

Michael Bender: But, but, but now it makes sense to think about end is some fixed upper bound
Michael Bender: But, but even, even when you don't know exactly what end is

Michael Bender: Asked me in a couple of slides, why even if you only have some fixed upper bound sort of why this is going still going to be a better scheme, then, then a Bloom filter, even when you don't really have a good sense about what n is. And

Richard Barnes: One more clarifying question on this side. So the total number of bits Union for the hash tables, then and log and over a year and log one over here.

Richard Barnes: Is that

Michael Bender: So the total number

Michael Bender: So if you stored it explicitly without encoding would be n times this quantity here and times log and divided by epsilon bits. That's what you would need with the naive encoding. But now we're going to do better, where we're just going to go to say it's an times this quantity here.

Michael Bender: Right, so we so we want to make this with n times blog one over apps on

Richard Barnes: Cool, or at least

Michael Bender: Order that. Yeah. So yeah. So again, the more questions, the better. Because then I actually feel like I'm interacting with human beings, which I always enjoy

Sarah Scheffler: Okay, one more, since we're here. Sorry.

Sarah Scheffler: I'm so yeah

Michael Bender: Yes, please.
Sarah Scheffler: mbu um so here we're talking about the false false positive are coming from hash collisions, because we're just hashing every element that said, This is not like the false positives from a Bloom filter. Normally, right, which are about

Michael Bender: That's exactly right.

Michael Bender: So yeah, it's so the only source of false positives is from fingerprint collisions and now we're just going to store the fingerprint. These fingerprints without adding any additional errors. That's right.

Michael Bender: Yeah so much again. I really appreciate the emphasis of that question, sir.

Michael Bender: Um, okay, so now what I want to do is talk about quotient thing. And I'm going to describe how you store these fingerprints in an efficient way so that the space is only order like log of one divided by the ever made bits per element.

Michael Bender: And so again, just the picture from before. Here we've got the element x here we've got our fingerprint there, we're going to divide the fingerprint into the top. The most significant login bits. And then the least significant log of one over epsilon bits.

Michael Bender: So this is our fingerprint. But we're cutting it in half.

Michael Bender: And now we're going to store these bit. So this is going to be called the question and this is going to be called the remainder. So the quotient.

Michael Bender: Is we're going to store implicit the end the remainder. We're going to store explicitly. So the quotient like these q of x, that's going to be stored based on the location in the hash table where you store the remainder

Michael Bender: So in our hash table we store this our effects and based on the address where this is stored. We know the question. And so we know the fingerprint.
Michael Bender: And so, and, you know, this is an old idea that's due to Knuth, and you see it all over the place and certainly an architecture and it's just a it's an old idea. And that turns out to be very powerful.

Michael Bender: But there's the question, which is how to deal with collisions and a hash table because maybe we're storing

Michael Bender: Sort of x. And so we're storing the quotient implicitly, and we're storing the remainder in this place and a hash table. Now we're storing some y

Michael Bender: Which is actually going to be hashed to the same place and a hash table, but we want to store a different remainder. So how do we deal with collisions and a hash table.

Michael Bender: And of course, if this were a an actual class, then I would stop talking and make people feel sufficiently uncomfortable that they need to answer and I'm still trying to figure out whether I should do that. Now, or just give the answer.

Michael Bender: Um, but the main thing is, well, isn't this a solved problem, like, you know, we've all studied hashing. Yeah.

Davin Choo: So what if we just take the song.

Davin Choo: Like in the Bloom filter case you just always set one

Michael Bender: It's an interesting idea somehow to see how to combine but then

Michael Bender: But then you're kind of as soon as you're you're adding things together or

Michael Bender: You're kind of losing information.

Michael Bender: But the thing is, this is just a hash table.
Michael Bender: And so there are lots of ways of dealing with collisions and a hash table. And so the question is, why can't we just use them.

And so one of the most efficient ways. So changing. It's got problems because pointers are very expensive and waste a lot of space. But what's wrong with just plain old

Michael Bender: You know, standard sort of out of the box linear probing and let me show you what is wrong with it in the next picture in. Next slide.

So here's a picture of describe what the problem when you've got these hash collisions. When you're doing quotient thing and I'll just give the example of, say, we've got a six bit hash. So this three bits for an address and three bits for data.

Element right here. So the question, like the remainder is 011

And it started positions 001 so maybe this element represents a fingerprint that 001011

But maybe this element here isn't actually in the right place. Maybe this element was actually bumped over because of linear probing and maybe this element is really 00011

And we can't tell because this hash is stored implicitly based on location.

And what you're doing with linear probing is you're moving the location. Again, same here. Does this element here represent 100111 or maybe it represents 011111 because they got moved over and we can't tell.

Michael Bender: You the way I've described things now because because when you do linear probing we're losing information.
Michael Bender: And so that's where the third hero of the talk is going to come in. So I've talked about fingerprinting, and I've talked about motion thing. And so now I'm going to talk about collision resolution.

Michael Bender: And so again, it took me a while to get to the structure of the talk, but basically the heroes of the talk, are fingerprinting potion thing and collision resolution and you can use these to solve lots and lots and lots of different sort of filter problems. Um, but in order to get there. I wanted to explain what I meant by filter how they're used as well as sort of motivating why Bloom filters are pretty awesome, but they're still not the end of the story. Okay, so now I need to talk about collision resolution.

Michael Bender: And there are lots of different ways of doing collision resolution and I'm going to talk about sort of one way, but then I'll talk about a slightly different way. But this is one of the ways that I like best.

Michael Bender: And what we're going to do is used to metadata bits per slot in the hash table. And that's going to let us recover the original location. And so this is one Array of metadata bits and and the one is going to mean something is hash to this slot.

Michael Bender: And zero is going to mean that this is an that nothing got hashed here.
Michael Bender: And then there's going to be another array here that says I'm hashed

Michael Bender: To the same place as the element before me and and when we do the decoding. I'm going to describe this

Michael Bender: In where the decoding is very complicated because the decoding is actually going to start from the beginning of the array and just run through the entire array, but but

Michael Bender: But it can be broken up into smaller localized chunks. But for now, the way I'm describing the decoding, you have to start from the beginning of the array. So let's see. So

David Reed: Actually can I

Michael Bender: Yeah yeah

David Reed: So this may be a dumb question, but it looks to me like you're doing something that's got certain amount of complexity to it and you know I had thought there would be a base case that is like

David Reed: The simplest thing I could imagine, which is replacing the slot where there's a collision replacing the slot with a, you know, sort of magic value that says some number of guys have collided here. So you can't you, so you would return a false positive.

David Reed: If anything has the the quotient, you know, no matter what remainder. It has after that. So that seems like the ultimately most simple thing is that makes sense. Yeah.

Michael Bender: It makes sense and

David Reed: In fact,
Michael Bender: I think Kuszmaul is on the talk and he when I

314 00:45:45.420 -- 00:45:49.350
Michael Bender: He and I were recently talking about cool ways that you could try to simplify

315 00:45:50.910 -- 00:45:57.690
Michael Bender: You know some of this may be introducing other sources of false positives. But one of the

316 00:46:00.570 -- 00:46:09.060
Michael Bender: But, but for now, what I really want to do is actually make it so that I really am storing all of the fingerprints. Exactly. And

317 00:46:10.500 -- 00:46:17.550
Michael Bender: This is a fairly complicated data structure to code. And so if you're using this. It's really nice. If you can find a library.

318 00:46:20.430 -- 00:46:21.690
Michael Bender: Is you really enjoy

319 00:46:23.820 -- 00:46:35.730
David Reed: My intuition got stronger when I thought of that because I said oh well you can throw in false positives, you just don't want to throw them in. So they systematically make everything worse to fail fast right

320 00:46:35.790 -- 00:46:36.390
Michael Bender: That's right.

321 00:46:36.600 -- 00:46:37.530
David Reed: And I think there's

322 00:46:37.560 -- 00:46:50.070
Michael Bender: I think that is an exciting thing to think about, about how do you sort of balance, sort of the ease of coding and throwing in some extra false positives. But now I don't want to throw in any extra false positives at all.

323 00:46:52.440 -- 00:47:01.050
Michael Bender: And I just so this slide here where I described the decoding. I'm going to try to say it fast because it's not a slide that

324 00:47:01.920 -- 00:47:10.500
Michael Bender: One absolutely needs to understand to get the rest of the talk, but I actually enjoy it. And so I get pleasure out of, out of explaining this.
Michael Bender: So the variance is going to be the no element is stored before its target position. This is, this is basically going to be.

Michael Bender: Built on the kind of hashing called Robin Hood hashing. So if we look at this first slide here, this is zero in slot 001 meeting, nothing has hatched here.

Michael Bender: And so we already know that this first slide is an empty slot. We don't even need an extra bit to let us know that we just know it immediately from that bit here. Then if something is hash to this second slot 01

Michael Bender: And so this remainder is stored the bits are stored in this remainder. And we know what's in the correct slot.

Michael Bender: So now we go to the next thing is we see there's a one in this position here which says I'm hash to the same place as the element before me. So there's a one here, which means that

Michael Bender: This 010 is hash to the same place. So that means that we know that this second position encodes the fingerprint 001010 again. Same here. This one means that this remainder is hash to the same place as the

Michael Bender: Remainder in the previous position, which was also stored, you know, in the same place here. So that's so here we know that this fingerprint is 001111

Michael Bender: Now we look here, this remainder is mapped to the next array position. And so we look at the next re position is based on this one there. So we know that 010010 is the fingerprint.

Michael Bender: That it belongs and and it really should go there. So now this is sort of what something I think it's cool, which is we look at this one, which does the remainder would map to the next position.
Michael Bender: But recall that no element is stored before its target position and there's no other places that it can be so we know implicitly without even needing any extra bits that this is an empty slot in the array.

Michael Bender: And then again here. There's something hash the disposition

Michael Bender: It's in the correct slot. And so we're in good shape. This is mapped to the same position as the previous remainder. And so, so basically it's somehow you do this on coding where you unzip the array.

Michael Bender: And you can figure out where where every element is stored just based on the zeros and ones. And it's sort of to metadata bits per erase slide.

Michael Bender: Okay, so this is a potion filters and this is one way of doing collision resolution by basically taking the hash table.

Michael Bender: And generalizing it so that it works. Even though we're not explicitly storing the entire fingerprint, but only implicitly storing

Michael Bender: Part of the fingerprint. But we want to do this without losing it losing any information. Okay, so let's talk about closing filter capabilities and just compare this with Bloom filters before I go on to describe other alternatives, so

Michael Bender: You can count. You can delete. There are lots of different ways of counting

Michael Bender: You know, decide depending whether you want to count in unary or binary. I'm happy to talk about that more. After the doc resizing is now much easier because suppose that you

Michael Bender: You have an upper bound of elements, but in fact at the moment you have very few elements. So then you, you just do standard resizing of your hash table where

Michael Bender: You use a much smaller hash table and store more bits of the remainder explicitly and so you're so you're always very space efficient.
Elements enumeration and filter merging is easy. It's just you're sort of zipping along two different arrays and merging them into a large array.

And if you want to store some value associated with the elements, just put a value on next to it and just add that value in the array position as well. It's the values are allowed because

The filter is just a dictionary that is storing fingerprints.

And so you can add values to the, you know, to the dictionary, the way you would with any other dictionary.

So this is the filter capabilities in terms of performance. It's

One plus something tiny times n plus you know times log of one over epsilon. Now we see this log of one over epsilon is the remainder. And then there's also these two additional bits that that we need in order to

To over, you know, so that we can recover the original position where a fingerprint was hashed the CPU cost is sort of constant expected

And data locality is much better because it's one probe and one scan. So you've got some practical and theoretical performance advantages from a cushion filter.

So there's

Two things I want to do quickly. So I just wanted to remind the general approach, which is sort of fingerprinting

Quotient thing where we're storing part of the fingerprint implicitly and then collision resolution.
Michael Bender: And what I described in this question filter was based on linear probing and a particular kind of linear probing called Robin Hood hashing where we use these metadata bits to recover each original fingerprint. But there are other ways of doing this.

Michael Bender: You know where you can use some sort of different hash table.

Michael Bender: Maybe more sophisticated maybe less sophisticated or maybe just different, but it's the sort of same general approach of you've got a hash table, but then you need to deal with Collision resolution in some way.

Michael Bender: And so I'll describe one more alternative which is called based cuckoo filters and it's based on using a different kind of hashing scheme and so cuckoo hashing is another beautiful

Michael Bender: Hash table where, again, you've got to hash tables each other to hash functions and each hash function hashes to some particular bucket with some number of slots, you know, for is a reasonable number

Michael Bender: And so here this is some element x, and it could get hashed to any one of the four slots in

Michael Bender: In that position or any one of the four slots and another position.

Michael Bender: And

Michael Bender: You know, if their space to put the element in any one of those buckets. Great.

Michael Bender: But if there's no space in any one of these eight slots, then what you need to do is kick out an element and move it to an alternative location.

Michael Bender: Which. So here, maybe we kick out that position there and now there's room to put backs in because we've kicked out to the other position and and
Michael Bender: That and moving this element may cause other kicks and so on and so part of the beauty of the cuckoo hashing analysis is that, amazingly, it actually works.

Michael Bender: And this is my cartoon of a cuckoo that sort of fits with the style of the rest of the talk.

Michael Bender: Okay, so that's cuckoo hashing. And so the question is, can you make a cuckoo filter based on cuckoo hashing and now we have some other problems and one of them is if you kick out some fingerprint.

Michael Bender: How do you find sort of an alternative like maybe this is one fingerprints and maybe that's the different fingerprints.

Michael Bender: And so how do you

Michael Bender: Sort of moved to an alternative fingerprint. If you're not storing the original element X, you're just storing one of these fingerprints.

Michael Bender: It just, it seems like an impossible problem.

Michael Bender: And I'm just going to say this very briefly, and I'm happy to answer questions after but it turns out you give up on independent hash functions.

Michael Bender: And the alternative location is in fact only going to depend on the remainder bits. So that means that if you have three remainder bits, then you don't have very

Michael Bender: You don't have independent hash functions at all. In fact, you're only going to have eight choices of other bits to go to. So you're going to entirely give up on independent hash functions and the alternative location is going to depend only on a very small number of bits.
Michael Bender: It turns out, when you do this, you also give up on a synthetic correctness. So this is not a data structure that works for arbitrarily large end but the beautiful thing is that it does work for practical and that isn't too large.

Michael Bender: And like like

Michael Bender: When I first read about this. It just seemed like such a not good idea because as some topically it can't work but amazingly, it does work for reasonable values event.

Michael Bender: Now, again, the only final thing I'd like to say is cuckoo hashing seemingly doesn't have these metadata bits because we didn't add any metadata bits, but we're paying for that cost anyway. And that's because since there four slots per cell.

Michael Bender: You need to store more of the fingerprint bits explicitly. And so it's sort of, you don't actually get a space advantage or or really much of a disadvantage.

Michael Bender: I let's see how am I doing on time. Am I really running badly on time or

Julian Shun: As so external clock, but I think you can continue and if people need to leave.

Julian Shun: Thinking

Michael Bender: I could do another three I could do another three minutes to get an A, but if you want me to shut it off. I was doing right to conclusions.

Michael Bender: Another three

Michael Bender: Okay, sounds

Julian Shun: Good.
Michael Bender: Then Julian, please do cut me off when when it feels like I'm being very impolite.

Julian Shun: No Pro. Sure.

Michael Bender: Yes, okay. So in terms of comparisons.

Julian Shun: Sort of, I

Michael Bender: Don't want to do a whole table with this, they're both pretty good space, one is a little better locality. Then the other

Michael Bender: Cuckoo filters degraded higher load factors, they're little, they're much easier to to code. They've got pre synthetic guarantees, but they fail one and as large enough, but

Michael Bender: The point isn't isn't really to compare these data structures because it's just sort of one or two data structures in a in a

Michael Bender: In a large field.

Michael Bender: This is this slide. The only reason I'm not skipping it is is this is going back to the question that Charles asked, originally, which is turns out there is an optimal filter.

Michael Bender: With space that's optimal to lower terms and it has sort of an error rate that's always epsilon, no matter what the query is even when you repeat queries.

Michael Bender: And even when you have sort of an adaptive adversary that repeats queries that knows mistakes. We're all operations are constant in search query delete with high probability. I should have written them with high probability there and that's above

Michael Bender: Okay. So just to conclude with
Michael Bender: One slide on some empirical performance, which is that like there are lots of different filter data structures that people implement.

Michael Bender: In general, the space among all of them is pretty similar, but they also have very different performance guarantees so.

Michael Bender: So if you look at. So again, the x axis is load factor which is how full the data structure is.

Michael Bender: The y axis is throughput, which is just so up is good and down is bad. This is to put for insertions so up is good and down is bad.

Michael Bender: And this is helpful X axis is helpful, the data structure is and you can see. So the cuckoo filters a data structure that's really, really awesome when it's not too full.

Michael Bender: But it performs much worse as the data structure gets more and more full and you can kind of see why that happens because as it gets more full there are more and more kicks, where one element gets kicked to a different element to a different location.

Michael Bender: And that causes poor data locality.

Michael Bender: Like poor data locality.

Michael Bender: There.

Michael Bender: So here, the main thing about this slide is to report on the data structure that does some things including minimum of two choice and and and sort of underlying vector operations, because.

Michael Bender: In order to get good performance. And again, this was a comment. I think that David, you asked earlier, which is like, isn't this kind of a CPU intensive data structure to implement.
Michael Bender: And the answer is yes, it is. And so, so this is showing how with, you know, some algorithms and some vector operations you can you can make this decoding.

And the answer is yes, it is. And so, so this is showing how with, you know, some algorithms and some vector operations you can you can make this decoding.

Michael Bender: Much faster. And I think what I want to do is I think I want to conclude, because I don't want to go over. Does anybody know what this slide is

Michael Bender: Much faster. And I think what I want to do is I think I want to conclude, because I don't want to go over. Does anybody know what this slide is

Michael Bender: This is not the first time I've used this slide in a talk, but I'm curious if anybody recognizes what this slide is

Michael Bender: This is not the first time I've used this slide in a talk, but I'm curious if anybody recognizes what this slide is

Michael Bender: I guess I'll just say this is my summary slide.

Michael Bender: I guess I'll just say this is my summary slide.

And in terms of morals of the talk. The first moral is well

And in terms of morals of the talk. The first moral is well

Julian Shun: It's time to change your filter, which was the

Julian Shun: It's time to change your filter, which was the

Michael Bender: The heroes of the talk, we're fingerprinting and quotient and inclusion resolution and the thing that I think is so cool is that these are the unifying the heroes of the talk, both in theory, and in practice.

Michael Bender: The heroes of the talk, we're fingerprinting and quotient and inclusion resolution and the thing that I think is so cool is that these are the unifying the heroes of the talk, both in theory, and in practice.

Michael Bender: And, you know, regardless of whether the goal is to implement the fastest filter you can or come up with the best synthetics, you can. There's still the same heroes, and I guess to be philosophical applications should demand a richer set of applications from their film for

Michael Bender: And, you know, regardless of whether the goal is to implement the fastest filter you can or come up with the best synthetics, you can. There's still the same heroes, and I guess to be philosophical applications should demand a richer set of applications from their film for

Julian Shun: A set of operations from their
Michael Bender: Filter because the filter is can you know can meet the demand so applications should use use

425 01:01:45.210 --> 01:01:47.490
Michael Bender: filters that that can do more things.

426 01:01:48.660 --> 01:01:54.960
Michael Bender: And I guess I'll conclude with one more thing, which is it turns out Stony Brook is hiring in theory.

427 01:01:56.010 --> 01:01:56.580
Michael Bender: So,

428 01:01:57.780 --> 01:02:07.590
Michael Bender: One position is earmarked for quantum computing and one is for a general theory position and like this is sort of a strange

429 01:02:08.220 --> 01:02:25.800
Michael Bender: Time when I imagine hiring may be getting tight but apparently we are in fact hiring and so please spread the word and also talk to me privately if you might be interested. So I'll stop there. I'll go back to the moral of the talk and answer any questions.

430 01:02:27.060 --> 01:02:28.980
Julian Shun: Great. Thanks so much, Michael.

431 01:02:30.180 --> 01:02:32.070
Julian Shun: Yeah, very, very, very top.

432 01:02:33.480 --> 01:02:39.360
Julian Shun: Does anyone have any questions if you have any questions please feel free to speak up.

433 01:02:43.680 --> 01:02:45.630
Michael Bender: Yeah, the more the better. As far as I'm concerned.

434 01:02:46.710 --> 01:02:51.300
Julian Shun: Yeah, I actually had one other question. Do you know if there's been

435 01:02:52.590 --> 01:03:01.260
Julian Shun: Any work on concurrent data structures for some of these like more complicated filters, like the Morton filter enclosure filter.

436 01:03:02.040 --> 01:03:03.600
Michael Bender: Um, there is some
Michael Bender: In some cases, the concurrency comes nearly for free because, you know, if you have a data structure that's based on linear probing.

Michael Bender: Then you're basically doing very local changes to your data structure. And so you can kind of lock small segments. In some cases, it's a little bit harder to achieve.

Michael Bender: But so I guess they so it's a yes, there has been some work on this, but I also think that the more deeply you dive into a topic that seems closed, the more open like the more cool new problems do you discover so yes there's stuff that's done, but it doesn't mean it's not anything. It's not worth thinking about. Right.

Julian Shun: Great, thank you.

Tim Kaler: I had a question. Sorry, I can't, I can't seem to put my video on anymore.

Tim Kaler: I think the host turned it off earlier but

Michael Bender: Did I

Tim Kaler: No,
I don’t know.

Tim Kaler: So, um, you mentioned. Oh, there we go. Thank you.

Tim Kaler: And sorry for having my video on before

Tim Kaler: I’m curious kind of what the theoretical trade off is in terms of like space and computation between the some of these other filters and kind of

Tim Kaler: generalizations of traditional Bloom filters. For example, there are scalable Bloom filters, where you kind of

Tim Kaler: Have a have a chain of different filters of increasing size then you kind of tighten the false positive rate as you add additional

Tim Kaler: Blocks to your Bloom filter and you kind of get it for you kind of get a curve of, you know,

Tim Kaler: In exchange for that additional flexibility you have to pay with more hash functions and a little bit more space.

Tim Kaler: Do you have a sense of kind of a weird question filters kind of fall on that curve in terms of computation and space trade off.

Michael Bender: So again,

Michael Bender: The meat in all of these

Michael Bender: Yeah, I can answer this sort of both in theory, and in practice were sort of, in theory, you really can get the best of
Michael Bender: Sort of, if you use kind of a rare model where where you're doing word operations which you have to do anyway in in hash table. You can you can basically do everything in constant time with high probability.

Michael Bender: You know, using sort of the technique of fingerprinting and coaching thing and collision detection. And so in that sense I don't make theoretically it's hard to imagine doing much better than that.

Michael Bender: In terms of practice.

Michael Bender: Sort of these coaching techniques are computationally intensive and they're a pain to right.

Michael Bender: So there's so many cool techniques. I don't like dissing anything because I because there's so many cool approaches in general, I sort of feel like the doing something based on filtering in to me it's, it, it feels like a more promising.

Michael Bender: And more powerful approach, but that could also be a part as an answer.

William Henry Kuszmaul: Well, to clarify mine, my interpretation of Tim's question is that he's the questions kind of about dynamic resizing, what if you don't know. Yeah, is our priority.

William Henry Kuszmaul: And the point being that if you if you underestimated the size you can compensate after the fact, by building a second bigger filter that has epsilon
William Henry Kuszmaul: About a factor of two smaller and then another if that again was wrong, then you again double the size and both yet another filter who's epsilon is another factor of two smaller in each time you kind of add one extra bit to your

William Henry Kuszmaul: To your fingerprints to kind of compensate for the fact that, well, you're actually

Michael Bender: That's right.

William Henry Kuszmaul: Having more and more data structures and so I guess the question is

William Henry Kuszmaul: Um, I mean, you can do the same trick with a question filter. It's kind of agnostic to which data structure, you're expanding, but is there a better way to dynamically resize a question filter.

William Henry Kuszmaul: Like it just do question filters are kind of the days, for she described. Do they work well with dynamic resizing

Michael Bender: Oh, very nice. So, Bill, you know, thank you. Um, I guess I would say this, which is one of the things that I did early on. If you look at, do I have this the slide where I say where filters are used.

Michael Bender: Yeah. So this slide here where I talk about where filters are used.

Michael Bender: When you think about how to do dynamic resizing, I feel that the important question that you need to model is when do you have access, just to the

Michael Bender: The fingerprints or or Bloom filter or when do you have access to the encoded lossy information and when do you have access to be able to probe the dictionary.

Michael Bender: And re get the original element so that you can decide, oh, I know I have the original element. So now I realized I need more fingerprints or I need to encode something
Michael Bender: And make the filter, a little better. And so one of the reasons why I did this sort of lengthy introduction where I actually say how the filter is used is because it sort of makes it a little clearer when do I have access to an element in order to decide to like sort of to add more bits to a fingerprint and and sort of what I think the right answer is, whenever you're doing a false positive.

It sort of makes it a little clearer when do I have access to an element in order to decide to like sort of to add more bits to a fingerprint and and sort of what I think the right answer is, whenever you're doing a false positive.

Michael Bender: Which is or true positive, which causes you to access the dictionary, then you can also sort of access some of the original elements in the dictionary.

And then go back and re encode them with more bits into your filter. And so I actually think that that the way to think about the filter also is sort of in conjunction with some dictionary that you're backing up.

It's better know whether.

William Henry Kuszmaul: You're claiming that

William Henry Kuszmaul: Are you saying, okay, every time we every time that the data structure says something is present, then we're going to go check the dictionary. Anyway, the real yeah

William Henry Kuszmaul: And we're using that as an opportunity to do a little bit of rebuilding on our filter.

William Henry Kuszmaul: Are you saying that if you do that, right. You can also support dynamic resizing, kind of, you can allow for your filter to resize over time, or is it

William Henry Kuszmaul: Is
Michael Bender: Like to what degree. So that's one of that.

Michael Bender: So that's one of the next papers that I would want to write. It hasn't been written yet but that, but I do think that that is correct.

Michael Bender: That that sort of when you've got false positive. Yes, you're accessing the dictionary. So you're getting more you have access to access the original elements. So you've got more bits that so you can use that to say, Oh, they're more than there. They're not elements. There are two elements. There are five times as many elements as I thought I would ever have. So that's an opportunity to to add more false positive, more, more fingerprint bits.

Michael Bender: And reduce the the and keep a good false positive rate. So, so that's that's what I'm saying. But even if the point is, even if you don't do that. And even if you don't even if you don't do that at all. The nice thing about keeping fingerprints is like say it is that you get to decide how many of the fingerprint bits you want to store explicitly and how many of the fingerprint bits you want to store implicitly.

Michael Bender: And that is going to change as you increase the size of your hash table. So even without doing anything fancy that I described before fingerprints work really well with the resizing because you know with like if you have your hash table you store. One more, one more bit explicitly if you double it, you store one bit of your fingerprint.

Implicitly
Right.

Tim Kaler: Yeah, well I just started thinking about this when we were talking when there was that discussion about implementation complexity as it kind of

Tim Kaler: When I when I kind of think about some of the enhancements to Bloom filters. I think kind of one of the reasons I kind of discount them sometimes is because, you know, they're more complex and often Bloom filters one of its main virtues is simplicity

Tim Kaler: So I was just, Yeah, it'd be very interesting to see what the trade off is when you kind of consider the generalizations of Bloom filters in terms of like space provided

Tim Kaler: Even if it's just an esoteric curiosity. Because, as you said, kind of for practical purposes you you do quite well for you know reasonable set sizes.

Michael Bender: That's right. Totally agree.

Michael Bender: And those are

Michael Bender: You know well like these are amazing. Like all of the questions that people asked, are things

Michael Bender: That I'm excited about it either have done or want to do or

Michael Bender: Just

Michael Bender: Generally excited about.

Julian Shun: Great, thanks a lot.
Julian Shun: Any other questions?

Michael Bender: And you know I'm also available. Like, like, you know, I am happy to stay on if people want to talk. And it's also really nice to see old friends.

Michael Bender: As I said you know the names of people that they haven't spoken to in a long time.

Julian Shun: It seems like there are no questions at the moment.

Julian Shun: But I'm going to just leave the zoom room open in case anyone wants to chat, assuming that you're, you don't have to run, Michael.

Michael Bender: Yeah, I'm available. Yeah.

Julian Shun: Yeah, I actually have a three o'clock meeting, I need to get to. But I'll just leave this on.

Julian Shun: Yeah, I'm listening. Yeah. Great. And thanks for all the jokes to make the talk more fun.

Michael Bender: It's really, it's really great to be here.

Michael Bender: Virtually

Julian Shun: Yeah yeah

Julian Shun: Alright, thanks. So I'm going to log off but Linda's still going to be logged on so the meetings, not going to close and
Julian Shun: Yeah. Anyone who wants to chat, please feel free to chat and Michael, when you have to leave you can just sign off.