Fast GPU Code for Graphs

Wen-mei Hwu¹, David Min, Vikram S. Mailthody¹, Zaid Qureshi², Carl Pearson¹, Mohammad Almasri¹, Omer Anjum¹, Rakesh Nagi³, Jinjun Xiong⁴, Eiman Ebrahimi⁵
 ¹ ECE, ² CS, ³ ISE, University of Illinois at Urbana-Champaign, ⁴ IBM Thomas J. Watson Research Center, ⁵ NVIDIA Research

Graph Usage Is Growing

- Modern NLU/NLP and recommendation systems are increasingly based on graphs data that capture the relations among entities being analyzed.
 - Keyword/phrase/concept extraction and role-determination
 - Name-entity resolution
 - Timeline resolution
 - Causal relation resolution
- Reviewer recommendations, citation recommendations, recruiting recommendations, ...

2019 TC - Dynamic Algorithm Selection (P9+Volta)

2020 state of large graph traversal (BFS, UVM)

Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. 2020. Traversing large graphs on GPUs with unified memory. *Proc. VLDB Endow.* 13, 7 (March 2020), 1119–1133.

A Simplified View of an X86+Volta PCIe System

Graph traversal

 Start from a certain vertex (or vertices) and keep traversing neighboring vertices iteratively (recursively)

Sparse Access to 1TB in Much Larger Data via 50GB/s PCIe Link

Total Access Time (sec)

4000	45000		
	43000		
	40000		
3000	10000		
3000			
2500	35000		
2500			
2500			
2000	30000		
2000			
2000			
	25000		
	20000		
5000	15000		
5000			
5000			
	10000		
	5000		
o Speed of Light 20 sec I/O magnification (100X) 33 min CPU software overhead (2X) 1 hour			
^o Speed of Light 20 sec ^{I/O magnification (100X)} 33 min ^{CPU software overhead (2X)} 1 hour			
Speed of Light 20 sec I/O magnification (100X) 33 min CPU software overhead (2X) 1 hour	0		
		Speed of Light 20 sec I/O magnification (100X) 33 min CPU software overhead (2X) 1 hour	

Maybe forget about the data copy, just access it?

- GPU can also directly access the host memory
 - Also called as Zero-copy
- Can we make full use of PCIe only with zero-copy accesses?
- Conventional Wisdom says no header overhead, latency, …

Well... let's see

Interconnects are gaining bandwidth

- PCIe Gen 3 16GB/s (12 GB/s usable)
- PCIe Gen 4 32GB/s (24 GB/s usable)
- PCIe Gen 5 64GB/s (48 GB/s usable)
- NVLink to GPU will have 300 GB/s in the same timeframe as PCIe Gen 4

Any application should have scalability in mind

Challenges with UVM

- Large I/O Amplification
- Significant CPU paging software overhead
- Limited amount of parallelism in page fault handling

Accessing Host Memory with Zero-Copy

System setup

- Impersonate Host memory to the GPU to observe access patterns such as PCIe transaction size
- Measured latency roundtrip PCIe 1.0-1.4 µs

Challenges with Zero-Copy Access

- Must have enough overlapping accesses to tolerate latency and fully utilize the PCIe link
 - Each 128B access only occupy the 16GB/s PCIe for 8ns.
 - To fully utilize the PCIe link must have at least 1000/8 = 125 overlapping accesses
- Must have well-coalesced accesses there is a 18B Transaction Layer Packet header
 - The maximal effective bandwidth with 128B, 64B, and 32B accesses will be 14 GB/s, 12.48 GB/s and 10.24 GB/s

Data Access Patterns for the Neighbor List

EMOGI: Zero-copy graph travareal


```
1 void naive(*edgeList, *offset, ...) {
        thread_id = get_thread_id();
 2
 3
        . . .
       start = offset[thread_id];
 4
       end = offset[thread_id + 1];
 5
 6
       // Each thread loops over a chunk of edge list
 7
       for (i = start; i < end; i++) {</pre>
 8
            edgeDst = edgeList[i];
 9
10
            . . .
        }
11
12
        . . .
13 }
```

Listing 2: Coalesced Memory Access (Merged + Aligned)

```
1 #define WARP_SIZE 32
 2
 3 void aligned(*edgeList, *offset, ...) {
       thread_id = get_thread_id();
       lane_id = thread_id % WARP_SIZE;
 5
       // Group by warp
 6
       warp_id = thread_id / WARP_SIZE;
 7
 8
        . . .
       start_org = offset[warp_id];
 9
10
       // Align starting index to 128-byte boundary
       start = start_org & ~0xF; // 8-byte data type
11
       end = offset[warp_id + 1];
12
13
       // Every thread in a warp goes to the same edgelist
14
       for (i = start; i < end; i += WARP_SIZE) {</pre>
15
           // Prevent underflowed accesses
16
            if (i >= start_org) {
17
                edgeDst = edgeList[i + lane_id];
18
19
                 . . .
20
            }
21
       }
22
        . . .
23 }
```

Sum	Graph	Number		Size (GB)	
Sym.		V	E	E	w
GK	GAP-kron [10]	134.2M	4.22B	31.5	15.7
GU	GAP-urand [10]	134.2M	4.29B	32.0	16.0
FS	Friendster [52]	65.6M	3.61B	26.9	13.5
ML	MOLIERE_2016 [48]	30.2M	6.67B	49.7	24.8
SK	sk-2005 [12-14]	50.6M	1.95B	14.5	7.3
UK5	uk-2007-05 [13, 14]	105.9M	3.74B	27.8	13.9

SK

Merged + Aligned

cudaMemcpy Peak

UK5

100% 14 Average Bandwidth (GB/s) Access Size Distribution 12 80% 10 60% 8 40% 6 4 20% 2 0% Naïve Merged +Aligned Naïve Merged Naïve Merged Naïve Merged Aligned Naïve Merged +Aligned Naïve Merged 0 +Aligned +Aligned +Aligned GK GU ■UVM Naïve GK GU FS SK UK5 ML ■ 32-byte ■ 64-byte ■ 96-byte ■ 128-byte PCIe Read Request Size

PCIe Gen 3Request Size Distribution

PCIe Gen 3 Bandwidth Utilization

FS

Merged

ML

Electrical & Computer Engineering

EMOGI: BFS case-study

EMOGI: BFS case-study

I/O Read Amplification

BFS Execution Speed

EMOGI: Overall Performance Comparison

EMOGI: Overall performance comparison

Electrical &

■UVM + PCIe 3.0 ■EMOGI + PCIe 3.0 ■UVM + PCIe 4.0 ■EMOGI + PCIe 4.0

Conclusion and Future Work

Zero-Copy Access Merge+Aligned reduces I/O amplification and make full use of PCIe 3.0 and 4.0

https://arxiv.org/abs/2006.06890

- Workload balancing between long & short neighbor lists
- Utilizing unused GPU memory to enable reuse (e.g. TC)
 - Maintaining software cache
- Neighbor list compression / decompression