
Sparse Matrices Beyond Solvers - Graphs,
Biology, and Machine Learning

Aydın Buluç
Computational Research Division, LBNL
EECS Department, UC Berkeley

Fast Code Seminar, MIT
June 22, 2020

Sparse Matrices

“I observed that most of the
coefficients in our matrices were
zero; i.e., the nonzeros were ‘sparse’
in the matrix, and that typically the
triangular matrices associated with
the forward and back solution
provided by Gaussian elimination
would remain sparse if pivot
elements were chosen with care”

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics

Graphs in the language of matrices

• Sparse array representation => space efficient
• Sparse matrix-matrix multiplication => work efficient
• Three possible levels of parallelism: searches, vertices, edges
• Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths

BAT

à

AT � B
6

1 2

3

4 7 5

Graph coarsening via sparse
matrix-matrix products

1 52 3 4 6
1

5

2
3
4

6

5

6

3

1 2

4

A1

A3
A2

1 1 0 00 0
0 0 1 10 0
0 0 0 01 1

1 1 0
1 0 1
0 1 0

1 1
1 1

0 0 1

A1

A2 A3

x x =
2

1
2 1

Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments. SIAM Journal of Scientific Computing (SISC), 2012.

The GraphBLAS effort

• The GraphBLAS Forum: http://graphblas.org
• Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS):
http://hpc.pnl.gov/grapl/

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paper is
a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

http://graphblas.org
http://hpc.pnl.gov/grapl/

SuiteSparse::GraphBLAS

• From Tim Davis (Texas A&M)
• First conforming implementation of C API
• Features [1]:

• 960 semirings built in; also user-defined semirings
• Fast incremental updates using non-blocking mode and “zombies”
• Several sparse data structures & polyalgorithms under the hood

• Already multithreaded [2]
• Performance on graph benchmarks (e.g. triangles, k-truss)

comparable to highly-tuned custom C code
• Included in Debian and Ubuntu Linux distributions
• Used as computational engine in commercial RedisGraph

product
[1] Davis, Timothy A. "Algorithm 1000: SuiteSparse: GraphBLAS: Graph Algorithms in the Language of
Sparse Linear Algebra." ACM Transactions on Mathematical Software (TOMS) 45.4 (2019): 44.
[2] Aznaveh, Mohsen, et al. "Parallel GraphBLAS with OpenMP." CSC20, SIAM Workshop on Combinatorial
Scientific Computing. SIAM. 2020.

GraphBLAS C API Spec (http://graphblas.org)

• Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical
specification to an actual Application Programming Interface (API) that
i. is faithful to the mathematics as much as possible, and
ii. enables efficient implementations on modern hardware.

• Impact: All graph and machine learning algorithms that can be expressed in the
language of linear algebra

• Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs
(blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a
hierarchy of algebras (functions, monoids, and semiring)

A.Buluç, T. Mattson, S. McMillan, J. Moreira, C. Yang. “The GraphBLAS C API Specification”, version 1.3.0

GrB_info GrB_mxm(GrB_Matrix *C, // destination

const GrB_Matrix Mask,

const GrB_BinaryOp accum,

const GrB_Semiring op,

const GrB_Matrix A,

const GrB_Matrix B

[, const Descriptor desc]);

C(¬M) ⊕= AT ⊕.⊗ BT

http://graphblas.org/

Examples of semirings in graph algorithms

Real field: (R, +, x) Classical numerical linear algebra

Boolean algebra: ({0 1}, |, &) Graph connectivity

Tropical semiring: (R U {∞}, min, +) Shortest paths

(S, select, select) Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +) Graph matching &network alignment

(R, min, times) Maximal independent set

• Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
• Add: Traverses edges, Multiply: Combines edges/paths at a vertex
• Neither add nor multiply needs to have an inverse.
• Both add and multiply are associative, multiply distributes over add

1
2

3

4 7

6

5

AT

1

7

71
from

to

Breadth-first search in
the language of matrices

1
2

3

4 7

6

5

XAT

1

7

71
from

to

ATX

à

1

1

1

1

1parents:

Particular semiring operations:
Multiply: select2nd
Add: minimum

0

Input sparsity

• What was the cost of that ATx in the previous slide?
• If x is dense, it is O(nnz(A)) = O(m) where m=#edges
• If x is sparse, it is

• Over all iterations of BFS, the cost sums up to O(nnz(A)),
because no xi appears twice in the input.

• Note that this is optimal for conventional (top-down) BFS
• Many people outside the community miss this observation

and mistakenly think SpMV based BFS is suboptimal by a
factor of the graph diameter.

X

i:xi 6=0

nnz(Ai:)

A work-efficient parallel algorithm for
sparse matrix-sparse vector multiplication (SpMSpV)

• Moral: You should use this algorithm for exploiting input (vector) sparsity in SpMV in
multicore and many-core architectures

• Algorithmic innovation:
§ Attains work-efficiency by arranging necessary columns of the matrix into buckets

where each bucket is processed by a single thread
§ Avoids synchronization by row-wise partitioning of the matrix on the fly

• Performance:
– First ever work-efficient algorithm for SpMSpV that attains up to 15x speedup on a 24-

core Intel Ivy Bridge processor and up to 49x speedup on a 64-core KNL processor
– Up to an order of magnitude faster than its competitors, especially for sparser vector

1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

1 2 4 8 16 32
4

16

64

256

1024
amazon0312

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
ljournal−2008

1 2 4 8 16 32
16

64

256

1024

4096
web−Google

SpMSpV−bucket
CombBLAS−SPA
CombBLAS−heap
GraphMat

1 2 4 8 16 32
64

256

1024

4096

16384
wikipedia−2005110

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384
wb−edu

1 2 4 8 16 32
64

256

1024

4096

16384
dielFilterV3real

1 2 4 8 16 32
64

256

1024

4096
G3_circuit

1 2 4 8 16 32
256

1024

4096

16384

65536
hugetrace−00020

Number of Cores

Ti
m

e
(m

s)

1 2 4 8 16 32
256

1024

4096

16384

65536
delaunay_n24

Number of Cores
1 2 4 8 16 32

256

1024

4096

16384
hugetric−00020

Number of Cores
1 2 4 8 16 32

1024

4096

16384

65536

262144
rgg_n_2_24_s0

Number of Cores

X-axis: Number of cores Ti
m

e
(m

ill
ise

co
nd

s)

A.Azad, A. Buluç. A work-efficient parallel sparse matrix-sparse vector multiplication algorithm. IPDPS’17

1
2

3

4 7

6

5

X

4

2

2

AT

1

7

71
from

to

ATX

à

2

4

4

2

24

Select vertex with
minimum label as parent

1

1parents:
4

2

2

0

1
2

3

4 7

6

5

X

3

AT

1

7

71
from

to

ATX

à
3

5

7

3

1

1parents:
4

2

2

5

3

0

• Masks avoid formation of
temporaries and can enable
automatic direction optimization

• These footballs are nonzeros that
are masked out by the parents array

XAT

1

7

71
from

to

ATX

à

6

1
2

3

4 7

6

5

Output sparsity via masks

• The actual operation is x = ATx .* p
p is the parents array and .* is elementwise multiplication

• At first, our vision was limited: we only thought about eliminating
temporaries in GrB_mxv

• But it was important enough to motivate the inclusion of masks
into the GraphBLAS spec, though in limited form

Column-based matvec w/ mask

Idea was to run the same
column-based algorithm,
but checking against a mask
before writing to output

BFS in GraphBLAS with Masks

Push-pull ≡ column-row matvec

• Carl Yang and I pondered quite a bit on whether it was
possible to implement direction optimization in the
language of matrices *

• Push-pull (also known as direction optimization) was just
about running a row- vs. column-based matvec

• But it wouldn’t be competitive it its pure form because you
were pulling from every vertex, not just unexplored ones.

• A year or so later, GraphBLAS had “masks”
• Now it was totally obvious how to make push-pull

competitive in GraphBLAS

This is a story on how languages (and in this case APIs)
change our thinking and drive our creative process

Enter “masks”

Masks make “pull” implementable
competitively in GraphBLAS

Row-based matvec w/ mask Column-based matvec w/ mask

• Pull is better for sufficiently sparse masks; push otherwise
• Claim: “direction optimization” would have been discovered

automatically by the GraphBLAS runtime if we designed the
interface back half a decade ago.

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

GraphBLAST

• First “high-performance” GraphBLAS implementation on the GPU
• Optimized to take advantage of both input and output sparsity
• Automatic direction-optimization through the use of masks
• Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes
• Outperforms multithreaded SuiteSparse::GraphBLAS

Design principles:
1. Exploit input sparsity => direction-optimization
2. Exploit output sparsity => masking
3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)
• Breadth-first-search (BFS)
• Single-source shortest-path (SSSP)
• PageRank (PR)
• Triangle counting (TC)

Yang, B., Owens, “GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU”, arXiv

https://github.com/gunrock/graphblast

https://github.com/gunrock/graphblast

GraphBLAST syntax

GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU 13

1: procedureM�����BFS(Graph A, Vector v, Source s)
2: Initialize d 1

3: Initialize f (i)
8><>:
1, if i = s
0, if i , s

4: Initialize v [0, 0, ..., 0]
5: Initialize c 1
6: while c > 0 do
7: Update v df + v
8: Update f ATf .⇤ ¬v . using Boolean semiring (see Table 6)
9: Compute c

Pn
i=0 f (i) . using standard plus monoid (see Table 6)

10: Update d d + 1
11: end while
12: end procedure

1 #include <graphblas/graphblas.hpp>

2
3 void bfs(Vector<float>* v,

4 const Matrix<float>* A,

5 Index s,

6 Descriptor* desc) {

7 Index A_nrows;

8 A->nrows(&A_nrows);

9 float d = 1.f;

10
11 Vector<float> f1(A_nrows);

12 Vector<float> f2(A_nrows);

13 std::vector<Index> indices(1, s);

14 std::vector<float> values(1, 1.f);

15 f1.build(&indices, &values, 1, GrB_NULL);

16
17 v->fill(0.f);

18 float c = 1.f;

19 while (c > 0) {

20 // Assign level d at indices f1 to visited vector v

21 graphblas::assign(v, &f1, GrB_NULL, d, GrB_ALL, A_nrows, desc);

22 // Set mask to use structural complement (negation)

23 desc->toggle(GrB_MASK);

24 // Multiply frontier f1 by transpose of matrix A using visited vector v as mask

25 // Semiring: Boolean semiring (see Table 4)

26 graphblas::vxm(&f2, v, GrB_NULL, LogicalOrAndSemiring<float>(), &f1, A, desc);

27 // Set mask to not use structural complement (negation)

28 desc->toggle(GrB_MASK);

29 f2.swap(&f1);

30 // Check how many vertices of frontier f1 are active, stop when number reaches 0

31 // Monoid: Standard addition (see Table 4)

32 graphblas::reduce(&c, GrB_NULL, PlusMonoid<float>(), &f1, desc);

33 d++;

34 }

35 }

Algorithm 1. Matrix formulation of BFS (top) and example GraphBLAST code (bo�om).
Then in each iteration of the while-loop, the following steps take place: (1) vertices currently

active are added to the visited vertex vector, marked by the iteration d where they were �rst

, Vol. 1, No. 1, Article . Publication date: September 2019.

• To avoid have many different descriptors
that are different minimally, GraphBLAST
introduces the convenience function
desc::toggle.

• If the value for field is currently set to
default, desc::toggle will set it to the
non-default value and vice-versa

Kernel methods in Machine Learning
A kernel is
a function

that

Implicitly transforms raw data into high-
dimensional feature vectors via a feature

map; and then

Returns an inner product between the
feature vectors.

Must be positive-definite.

A kernel is
useful for

Factor out knowledge on data
representation from downstream

algorithms,
Exploit infinite dimensionality and

nonlinear feature spaces.

Kernels
are used

in

Support vector machine (SVM), Gaussian
process regression (GPR), Kernel

principal component analysis (kPCA), etc.

Figure source:
Russell & Norvig

750 Chapter 20. Statistical Learning Methods

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

0
0.5

1
1.5

2x1
2 0.5

1
1.5

2
2.5

x2
2

-3
-2
-1
0
1
2
3

√2x1x2

(a) (b)

Figure 20.27 (a) A two-dimensional training with positive examples as black circles and
negative examples as white circles. The true decision boundary, x2

1 + x2
2 ≤ 1, is also shown.

(b) The same data after mapping into a three-dimensional input space (x2
1, x

2
2,
√

2x1x2). The
circular decision boundary in (a) becomes a linear decision boundary in three dimensions.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x 22

x1
2

Figure 20.28 A close-up, projected onto the first two dimensions, of the optimal separator
shown in Figure 20.27(b). The separator is shown as a heavy line, with the closest points—the
support vectors—marked with circles. The margin is the separation between the positive
and negative examples.

φ(x1, x2) = (x1
2, x2

2, 2x1x2)
The circular decision boundary in 2D (a) becomes a linear boundary in 3D (b) using
the following transformation:

Marginalized Graph Kernels

Compare

Graph A

Graph B

0.60.4

0.30.2

0.5

Graph A

Graph B

0.9

0.9

0.5

0.3

0.4 0.6
0.7 0.2

Use edge weight to set
transition probability

𝑝 = 0.4

𝑝 = 0.6

𝑝 = 0.2

𝑝 = 0.3

𝑝 = 0.5

𝑝 = 0.4×0.9 = 0.36

𝑝 = 0.6×0.9 = 0.54

𝑝 = 0.2×0.5 = 0.10

𝑝 = 0.2×0.4 = 0.08

𝑝 = 0.3×0.3 = 0.09

𝑝 = 0.3×0.6 = 0.18

𝑝 = 0.5×0.7 = 0.35

𝑝 = 0.5×0.6 = 0.30

Sample paths

Length=1 Length=2

The inner product
between two graphs is
the statistical average
of the inner product of
simultaneous random
walk paths on the two
graphs.

The marginalized graph kernel
in linear algebra form represents
a modified graph Laplacian

Solving the Graph Kernel PSD system

Streaming Kronecker matrix-vector multiplication
• Regenerates the product linear system on the fly by streaming 8-by-8 tiles.
• Tiles staged in shared memory.
• Trade FLOPS for GB/s, but asymptotic arithmetic complexity stays the same.

Exploiting Sparsity

• Most discrete systems have natural sparsity (e.g. not all atoms are connected).
• 2-level sparsity exploitation:

i. Outer level: retain only non-empty tiles
ii. Inner level: use bitmap + compact storage format

• Packing into compact format: on CPU as a preprocessing step
• Unpacking for Streaming Kronxv: on GPU using bit magic + warp intrinsics
• Partition-based graph ordering reduces # non-empty tiles
☛ Cost easily amortized because we reorder each graph, not their product

E M P T Y
T I L E

D I S C A R D E D

K
H L R

E M Q
F O

I
N

A C G J P
B D S

A B C D E F G H I J K L M N O P Q R S

D E N S E S T O R A G E

0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 1
0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 1 1 1 0 1 0 0
1 1 0 0 0 0 0 1

B I T M A P 6 4 - b i t i n t e g e r n z m a s k

0b1000001000000100010010000010011101010010010011001100000011000000

0x0303324AE4122041

N O N - E M P T Y
T I L E

C O M P R E S S E D

Performance of the Graph Kernel

Yu-Hang Tang, Oguz Selvitopi, Doru Popovici, and Aydin Buluç. A high-throughput solver for marginalized
graph kernels on GPU. In Proceedings of the IPDPS, 2020.

GraKeL: Cython, multi-threading
GraphKernels: Python, no parallelization

The Markov Cluster Algorithm (MCL)

29

The number of edges or higher-length paths between two arbitrary
nodes in a cluster is greater than the number of paths between
nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of random walks through
the graph and removes lower probability terms to form clusters

Widely popular and successful algorithm for
discovering clusters (e.g. protein families) in
protein interaction and protein sequence
similarity networks

The Markov Cluster Algorithm (MCL)

30

Iteration 1 Iteration 2 Iteration 3Initial network

At each iteration:
Step 1 (Expansion): Squaring the matrix while

pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM),
followed by column-wise top-K selection and column-wise pruning
Step 2 (Inflation) : taking powers entry-wise

A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– Smaller b: less parallelism, memory efficient (b=1 is equivalent

to sparse matrix-sparse vector multiplication used in MCL)
– Larger b: more parallelism, memory intensive

A combined expansion and pruning step

x =
Prune

A A2 C = Prune(A2)

b

Ab

b b

q b: number of columns in the output constructed at once
– HipMCL selects b dynamically as permitted by the available

memory
– The algorithm works in h=N/b phases where N is the number of

columns (vertices in the network) in the matrix

HipMCL: High-performance MCL

• MCL process is both computationally expensive and memory
hungry, limiting the sizes of networks that can be clustered

• HipMCL overcomes such limitation via sparse parallel algorithms.
• Up to 1000X times faster than original MCL with same accuracy.

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018

x =

𝐴233 𝐴243

𝐴333 𝐴343

𝐴433 𝐴443

𝐴223

𝐴323

𝐴423

A A (or Ab) A2

Process row

Pr
oc

es
s

co
lu

m
n

Process Gridp × p

HipMCL on large networks

34

Data Proteins Edges #Clusters HipMCL
time platform

Isolate-1 47M 7 B 1.6M 1 hr 1024 nodes
Edison

Isolate-2 69M 12 B 3.4M 1.66 hr 1024 nodes
Edison

Isolate-3 70M 68 B 2.9M 2.41 hr 2048 nodes
Cori KNL

MetaClust50 282M 37B 41.5M 3.23 hr 2048 nodes
Cori KNL

MCL can not cluster these networks

HipMCL on Supercomputers with accelerators

35

• Recent top supercomputers are
all accelerated (e.g. with GPUs)

• This is what a ORNL Summit
node looks like

• There are 4608 such nodes in
the system

• Challenges: (1) Utilizing all GPUs,
(2) hiding the communication

Pipelined Sparse SUMMA
Joint CPU-GPU distributed memory
expansion of MCL algorithm

HipMCL on Supercomputers with accelerators

36

Other changes to HipMCL for the CPU-GPU workflow:
• Randomized memory estimation algorithm avoids symbolic phase
• New eager binary merging reduces memory footprint
• Integration of a much faster hash-based CPU SpGEMM algorithm

Bi
na

ry
 m

er
ge

Broadcasts

Symbolic SpGEMM

Pipelined
Sparse SUMMA

For each phase

Broadcasts

Numeric SpGEMM

Partial result
accumulation

Multi-way merge

Pruning

Inflation

Probabilistic memory
usage estimation

Offload to GPU

O. Selvitopi, M.T. Hussain, A. Azad, and A. Buluç. Optimizing high performance Markov clustering for pre-
exascale architectures. IPDPS, 2020

SpGEMM for DNA read overlapping

• Long reads from PacBio and Oxford Nanopore have the
potential to revolutionize de-novo assembly

• Overlap-Consensus-Layout paradigm is more suitable than
de Bruijn graph paradigm.

• Overlapping is the most computationally expensive step.

Layout identified

Consensus sequence

Overlap-Layout-Consensus

Reads
10K bases

Overlaps identified

SpGEMM for DNA read overlapping

• We need to quickly determine pairs of reads that are *likely to*
overlap, without resorting to O(n2) comparisons

• If two reads do not share any subsequence of length k (aka a k-
mer) for a reasonably short k, then they are unlikely to overlap

SpGEMM for DNA read overlapping

ri = ith read
kj = jth reliable k-mer
A(i,j) = presence of jth reliable k-mer in
ith read, plus its position

k5 k6

r1
r2

r3
r4

r5
r6

A matrix
k1 k2 k3 k4

• Suppose you have counted k-
mers and only retained
reliable k-mers

• Now you can generate this
read-by-kmer sparse matrix A

• These are all linear time
computations so far

Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Kathy Yelick, Aydın Buluç, BELLA: Berkeley Efficient
Long-read to Long-Read Overlapper and Aligner, Biorxiv, 2018

SpGEMM for DNA read overlapping

r1
r2

r3
r4

r5
r6

r1 r2 r3 r4 r5 r6

AAT(i,j) = # shared k-mers
between reads i and j, plus
their positions in the reads

Read-by-read overlap matrix: AAT

Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings

Acknowledgments

Ariful Azad, Tim Davis, Marquita Ellis, John Gilbert,
Giulia Guidi, Jeremy Kepner, Nikos Krypides, Tim
Mattson, Scott McMillan, Jose Moreira, John Owens,
Georgios Pavlopoulos, Dan Rokhsar, Oguz Selvitopi,
Yu-Hang Tang, Carl Yang, Kathy Yelick.

• My Research Team: http://passion.lbl.gov
• Our (new) Youtube Channel: http://shorturl.at/lpFRY
• The GraphBLAS Forum: http://graphblas.org

http://passion.lbl.gov/
http://shorturl.at/lpFRY
http://graphblas.org

Extra Slides

Counting triangles

A

5

6

3

1 2

4

Thanks to triangle counting, we knew or sensed
that something smarter algorithmically could be
done than just eliminating temporaries.

Cohen’s algorithm to count triangles:
- Count triangles by lowest-degree vertex.

- Enumerate “low-hinged” wedges.

- Keep wedges that close.

hi hi
lo

hi hi
lo

hihi
lo

A L U

1
2

1
1
1 2

C

A = L + U (hi->lo + lo->hi)
L × U = B (wedge, low hinge)
A ∧ B = C (closed wedge)
sum(C)/2 = 4 triangles

A

5

6

3

1 2

4 5

6

3

1 2

4

1

1

2

B, C

Azad, B., Gilbert. “Parallel triangle counting and enumeration using matrix algebra”. IPDPSW, 2015

The first paper that has the word “Masked SpGEMM” in it

Counting triangles

Exploiting Masks to avoid computation

1 52 3 4
1

5

2
3
4

A

1

5

2

3

4

1

5

2

3

4

1

5

2

3

4

Triangle counting example: B = (LU) ^ A ó mxm (&B, A, GrB_NULL, Int32AddMul, L, U)

Rows(L) Cols(U)

1 52 3 4
1

5

2
3
4

L

1 52 3 4
1

5

2
3
4

U

• Orange edges can not contribute to the
output, so drop them before computation

• If the mask is really sparse, just run the
inner product SpGEMM on mask nonzeros

• The inner product algorithm is equivalent
to the set intersection algorithm Andrew L.
wanted (at HPEC’17) GraphBLAS to beat

Triangle Counting in GraphBLAS

http://graphblas.org

B.6 Example: counting triangles in GraphBLAS

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3 #include <s t d i n t . h>
4 #include <s tdboo l . h>
5 #include ”GraphBLAS . h”

6

7 /⇤
8 ⇤ Given , L, the lower t r i an gu l a r por t ion o f n x n adjacency matrix A (o f and

9 ⇤ und irec ted graph) , computes the number o f t r i a n g l e s in the graph .

10 ⇤/
11 u in t 64 t t r i a n g l e c oun t (GrB Matrix L) // L: NxN, lower�t r i angu l a r , boo l

12 {
13 GrB Index n ;

14 GrB Matrix nrows(&n , L) ; // n = # of v e r t i c e s

15

16 GrB Matrix C;

17 GrB Matrix new(&C, GrB UINT64 , n , n) ;

18

19 GrB Monoid UInt64Plus ; // in t e g e r p lu s monoid

20 GrB Monoid new(&UInt64Plus , GrB PLUS UINT64 , 0 u l) ;

21

22 GrB Semiring UInt64Arithmetic ; // in t e g e r a r i t hme t i c semiring

23 GrB Semiring new(&UInt64Arithmetic , UInt64Plus , GrB TIMES UINT64) ;

24

25 GrB Descr iptor de s c tb ; // Descr ip tor f o r mxm

26 GrB Descriptor new(&desc tb) ;

27 GrB Desc r ip tor se t (desc tb , GrB INP1 ,GrB TRAN) ; // transpose the second matrix

28

29 GrB mxm(C, L , GrB NULL, UInt64Arithmetic , L , L , de s c tb) ; // C<L> = L ⇤.+ L ’

30

31 u in t 64 t count ;

32 GrB reduce(&count , GrB NULL, UInt64Plus , C, GrB NULL) ; // 1�norm of C

33

34 GrB free(&C) ; // C matrix no longer needed

35 GrB free(&UInt64Arithmetic) ; // Semiring no longer needed

36 GrB free(&UInt64Plus) ; // Monoid no longer needed

37 GrB free(&desc tb) ; // de s c r i p t o r no longer needed

38

39 return count ;

40 }

190

http://graphblas.org/

Push-pull ≡ column-row matvec

Pull Push

Yang, C., Buluc, A. and Owens, J.D., Implementing Push-Pull Efficiently in GraphBLAS. ICPP’18

GraphBLAS Execution modes

• A GraphBLAS program defines a DAG of operations.
• Objects are defined by the sequence of GraphBLAS method calls, but

object’s value is not assured until a GraphBLAS method queries its state.
• This gives an implementation flexibility to optimize the execution (fusing

methods, replacing method sequences by more efficient ones, etc.)

48

GrB_op1(A);
GrB_op2(B);
GrB_op3(C,A,B);

GrB_op1(A); GrB_op2(B);

GrB_op3(C,A,B);

• The GraphBLAS execution runs in one of two modes:
– Blocking mode … executes methods in program order with each

method completing before the next is called
– Non-Blocking mode … methods launched in order. Complete in any

order consistent with the DAG. Objects do not exit in fully defined
state until queried.

Opportunities in GraphBLAS’
non-blocking mode

• Suppose you are solving a linear system on the Kronecker product graph
• Actually happens when you are computing similarity between two graphs
• Using “graph kernels” enable machine learning on graph structures data,

such as proteins and other molecules.

• The Kronecker product itself has huge memory footprint and lots of
redundancy (NK+ML dimension but NKML apparent values)

N x M K x L

N*K x M*L

Opportunities in GraphBLAS’
non-blocking mode

• The only way to write this in GraphBLAS or any other library we know of:

• What we would rather call:

• But that would result in API bloat and would lead us to a rabbit hole.
• There are many other examples:

– KFAC (optimization method for deep learning),
– Triple matrix product (graph contraction and AMG restriction),
– Triangle counting (who needs the list of triangles when all we need is the count)

• Solution: A JIT that performs automatic operator fusion

GrB_kronecker(C, …, A, B, …); // C=AÄB
GrB_mxv(y, …, C, x, …); // y=C x

GrB_kronxv(y, …, A, B, x …); // y= (AÄB) x

