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What is Graph and why do we care?

Vertex (entity) Edge (relationship)

Proteins InteractionsBiology:

Persons FriendshipSocial media:

Neurons SynapsesBrain:

Graph: A representation of data
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Example: Social networks

Facebook: > 2.2 billion active users 

What to learn?
• Information spread
• Recommend friend
• Advertisement
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Brain network

Brain network: 100B neurons 
and 100T synapses 

What to learn?
• Brain functions
• Diagnosis and 

treatments
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q Classify nodes/subgraphs/graphs: protein 
classification, topic classification  

q Predict links: Are x and y friends? Friend suggestions 
on Facebook

q Identify communities: protein families
q Visualize graphs 

Common learning objectives on graphs 

This talk discusses common computations needed in all 
these tasks and how to map them to sparse linear algebra
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1. Learning on graphs: All we need is graph embedding
Ø Shallow embedding/deep embedding 

2. Computational patterns in graph embedding: All we need is 
passing messages among nodes

3. Central computations in message passing: All we need is 
sparse-dense (SpMM) and sampled dense-dense matrix 
multiplications (SDDMM)
Ø Example: graph drawing, graph embedding, graph neural networks

4. Efficient computations: All we need is optimizing memory 
utilization

5. Portable implementations: All we need is an auto-tuning 
framework 

Outline
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Learning on graphs:

All we need is 

graph embedding

1
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q Consider a node classification task

q A binary classification problem.
q Can we apply a traditional machine learning 

approach such as the logistic regression?
q In theory, yes! It may not work well in practice. Why 

not?

An example of learning on a graph
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Graphs represent very high-dimensional data 

0 1 0 0 0 0

1 0 1 1 0 0

0 1 0 0 1 1
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q What is the dimension 
of this graph?

q Can be n (# of vertices) 
according to Erdős, Harary, Tutte
§ One row represents the 

connectivity features of a 
vertex

§ What is the problem?
§ Curse of dimensionality
§ Need enormous training data
§ Standard machine learning 

methods do not work well
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Erdős, Harary, and Tutte,, On the dimension of a graph, 
Mathematika, 1965 
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q Represent nodes by low dimensional vectors

How to address: Node embedding

d << n
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q Node embedding => dimensionality reductions 

Node embedding
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q Why useful:
– Low dimensional (meaningful and compact)
– Classical Machine Learning applies (e.g, K-means 

clustering for node grouping)
– Network visualization (2D or 3D latent dimension)

Node embedding

Credit: Jure Leskovec
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Goal of node embedding 
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q Just embedding lookup or deep neural networks

How to encode nodes: shallow/deep encoding

Shallow encoding

Deep encoding
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The encoder-decoder approach 

!"
!#

ENC(!")
ENC(!#)

$"

$#
DEC($", $#)

&'(( = ∑(,-,,.)∈1×1 3(DEC($", $#) ,(4 !", !# )

Input Graph Embedding spaceEncoder
(shallow/deep)

Pairwise
Decoders
(e.g., dot products)

Proximity of nodes  
in the original graph

Most Graph ML methods follow variants of this approach
Node2vec, GNNs, Graph Visualization……
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Computational patterns in 
graph embedding :

All we need is 

Message passing

2
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q Lesson from the image embedding: how do we embed 
images in a latent space?

Node embedding goals
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Embedding images to latent space

A filter

3x3 dense and regular filter
based on neighboring pixels

Graph analogy
(embedding this node)
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Node embedding
based on information received from neighbors

1
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Sparse and irregular 
relative to images
Ø Different filter size at 
different nodes
Ø Highly irregular
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The setting
1. Message generation on an 

edge (v,u):
Ø Determined by a message 

generation function

2. Message aggregation on 
vertices
Ø Determined by an aggregator

3. User defined:  

Message passing is all you need

!"#
!$% ='()$, )%, +$%)

-$= .
%∈0($)
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vertex features

edge features

Updated vertex features
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1. Message generation: just 
pass node features 

2. Message aggregation: sum 
messages (followed by non-
linear activations)

Example: Graph Convolutions
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Kipf and Welling, Semi-supervised classification with graph convolutional networks, ICLR 2017 
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1. Message generation: dot 
product and then sigmoid 

2. Message aggregation:
elementwise multiply and 
then sum

Example: Graph Embedding

!
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Rahman, Sujon, Azad, Force2Vec: Parallel force-directed graph embedding, ICDM 2020
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1. Message generation: 
multilayer perceptron

2. Message aggregation: max 
pooling

Similarly for graph drawing  

Example: Complex GNNs

!
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#
#

$%& = ()*(,%, ,&)
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= 6
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7 $%&

Thus, message passing models are widely used to implement almost all 
graph ML algorithms 

(e.g., in Deep Graph Library and PyTorch Geometric)
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Central computations in message 
passing:

All we need is 

sparse-dense (SpMM) and sampled dense-dense 
matrix multiplications (SDDMM)

3
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q Message generations on edges adjacent to v1

Computational kernels in message generation
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Computational kernels in message generation
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The vertex 
v1 and its 
neighbors

ü Message can be scalars, or vectors depending on the operation

ü We consider message generations on edges adjacent to v1

,'%

,'#

,'$

Using y for generality
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Computational kernels in message generation
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The vertex 
v1 and its 
neighbors

ü This operation is called SDDMM: Sampled Dense-Dense 
Matrix Multiplication: , = .× 01⨀ 3

Dense multiplication sampled by the adjacency matrix A
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Using y for generality
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Computational kernels in message aggregation
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The vertex 
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neighbors

ü This operation is called SpMM: Sparse-dense matrix (or tensor)
multiplication:  Z= '× )
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FusedMM: SDDMM+SpMM
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No intermediate messages

Rahman, Sujon, Azad, FusedMM: A Unified SDDMM-SpMM Kernel for 
Graph Embedding and Graph Neural Networks, IPDPS 2021 (to appear)
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q Graph ML libraries such as Deep Graph Library (DGL) 
and PyTorch Geometric (PyG) either implement 
SpMM and SDDMM or rely on vendor-provided code 
from Intel MKL and NVIDIA CuSPARSE

Message passing ML via Linear Algebra 

Thus, SpMM , SDDMM and a few other sparse kernels are all we need to 
fully implement message-passing based graph ML algorithms 
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Efficient computations :

All we need is 

Optimizing memory utilization and load balancing

4



32

q Sparse operations are memory bound. 
– How do we know?
– How to estimate the peak performance?

q Roofline model

Why does memory matter?
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q Roofline model
q Operational intensity (also called arithmetic intensity) of 

FusedMM (message generation + aggregation):    
!

"!
# $%$!

, 

q where & is the average degree of the graph and d is the 
embedding dimension

q For example, for &=16, d=128: the arithmetic intensity is 
close to 1

q Hence, operations are almost always memory bound

Why does memory matter?
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q Utilize memory bandwidth: Stream data
q Utilize temporal locality
– Load data to cache/register once and use many times

How to optimize memory?
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q Partitioning (simple 1D) with balanced nonzero 
distributions (other partitioning possible)

q Access X, A and Z once (in most cases)
– May access Y several times 

Parallelization 
(with an aim to minimize memory traffic)
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X A Z
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Part 1
Part 2

Part 3

Thread 1

Thread 2

Thread 3
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Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2
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Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2
Vy3_1 Vy3_2

Input: Load necessary data to 4 registers
Output: Reserve two registers 

and perform the entire computation

Vzu_1 Vzu_2
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Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2

dot1 !()

Vy3_1Vy3_2

Edge-wise message generation
for the edge (u,3)

Vzu_1 Vzu_2
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Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2

Vzu_1 Vzu_2

dot1

Vd1_1 Vd1_2

!()

Vy3_1Vy3_2

v=1

Vertex-wise message aggregation
(partial via edge (u,3))
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Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2

Vzu_1 Vzu_2

dot1 dot2

Vd1_1 Vd2_2

Non temporal Memory write 

Vd1_2 Vd2_1

v=2
!() !()

Vy3_1 Vy3_2 Vy5_1Vy5_2

v=1

Next for the edge (u,5)
All necessary vectors (x and z) 
are still in registers
(full data reuse)
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q Register blocking (within each thread)
– Works perfectly fine as long as all data (for one vertex) fits 

in available registers 
– Otherwise, we will reload registers from cache

Temporal locality via register blocking



42

0.2 0.4 0.6 0.8 1 1.2 1.4
Arithmetic Intensity (A.I.)

20

40

60

80

100

120

140

A
tta

in
ab

le
 G

FL
O

P/
s

Roofline model for Ogbprot., Youtube, and Orkut

Orkut

 Youtube

 Ogbprot.
Peak Bandwidth

MAX B/W: 100GB/s

Observed performance (Intel Skylake: 100GB/s bandwidth)
Example: Graph Embedding 

Still does not achieve 
the best performance

Runtime measured from 
a Python interface

We speculate: Python to 
C++ interface is slowing 
things down
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q Deep Graph Library (DGL)
– Uses C++ backend 
– We consider DGL based on PyTorch
– DGLS also uses SDDMM and SpMM in the backend 

Compare with Deep Graph Library
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Graph embedding on Intel Skylake

Just 
FusedMM

FusedMM
with register
Blocking and 
Other tricks

Just SDDMM
+

SpMM

Graph Embedding Graph Drawing
(Force-directed) 

Graph Convolutional
Network (GCN)

Much better 
because of 
high-dim messages 

Ogbprot. Graph
Vertices 132K
Edges 39M
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q What about other processors (ARM/AMD/IBM)?
q We developed a code generator for different Single 

Instruction Multiple Data (SIMD) units
– Based on an autotuned linear algebra library called ATLAS 

(Clint Whaley; Antoine Petitet, Jack J. Dongarra , 2001)

Performance portability

simd.h

X86(AVXZ, 
AVX,SSE)

OpenPower
(VSX)

ARM64 
(ASIMD)

GNU 
VEC Code Generator

genkern genhead genmake

Extractor

Make filesHeader 
files

Source 
files

Source-to-source 
compiler

Generated files

Machine independent macros

Machine specific SIMD codes
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Graph drawing on AMD and ARM processors

AMD ARM
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q Graph embedding from python (end-to-end)
q Same algorithm => same accuracy 

End-to-end Performance 

Thus, optimized and portable sparse kernels (SpMM + SDDMM) speed 
up various graph ML algorithms significantly
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1. Learning on graphs: All we need is graph embedding
Ø Shallow embedding/deep embedding 

2. Computational patterns in graph embedding: All we need is 
passing messages among nodes

3. Central computations in message passing: All we need is 
sparse-dense (SpMM) and sampled dense-dense matrix 
multiplications (SDDMM)
Ø Example: graph drawing and graph embedding

4. Efficient computations: All we need is optimizing memory 
utilization and load balancing

5. Portable implementations: All we need is an auto-tuning 
framework 

Summary

We developed FusedMM and 
experimentally validated these 

hypotheses
Rahman, Sujon, Azad (IPDPS 21)
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q The evidence tells us that sparse linear algebra can 
help Graph ML run faster on CPUs and GPUs

q Two questions that remain mostly unanswered
– How to exploit sparsity, e.g., sparse embedding?

• NVIDIA’s new GPUS (A100) will have limited features for sparse 
operations 

– How to distribute the computations, e.g., in 
supercomputers?

What next?
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q Main equation in forward propagation

Future direction: Distributed Graph Neural Network

nxn sparse matrix
(graph adjacency)
n: number of vertices

nxd dense matrix
(embedding matrix)
d: embedding 
dimension

dxd dense matrix
(weight matrix)

!(#) = &('!(#())*(#))

We aim to make them sparse 
without sacrificing accuracy 
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Parallelizing GNN (1D/2D/3D matrix multiplications) 

The adjacency matrix: A !(#$%)

P1

P2

P3

P4

P1 P2

P3 P4

P1

P2

P3

P4

!(#)

P1

P2

P3

P4

x

x
x
x
x

=

'(#)

=

(replicated)

=
=
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!(() = *(+!(($%)'(())
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Thanks for your attention 

Joint work with

Md. Khaledur Rahman and 
Majedul Haque Sujon

Indiana University 


