
Computational Building Blocks for Machine
Learning on Graphs

Ariful Azad
Assistant Professor
Indiana University, Bloomington
azad@iu.edu

MIT Fast Code Seminar 01/25/2021

2

What is Graph and why do we care?

Vertex (entity) Edge (relationship)

Proteins InteractionsBiology:

Persons FriendshipSocial media:

Neurons SynapsesBrain:

Graph: A representation of data

3

Example: Social networks

Facebook: > 2.2 billion active users

What to learn?
• Information spread
• Recommend friend
• Advertisement

4

Brain network

Brain network: 100B neurons
and 100T synapses

What to learn?
• Brain functions
• Diagnosis and

treatments

5

q Classify nodes/subgraphs/graphs: protein
classification, topic classification

q Predict links: Are x and y friends? Friend suggestions
on Facebook

q Identify communities: protein families
q Visualize graphs

Common learning objectives on graphs

This talk discusses common computations needed in all
these tasks and how to map them to sparse linear algebra

6

1. Learning on graphs: All we need is graph embedding
Ø Shallow embedding/deep embedding

2. Computational patterns in graph embedding: All we need is
passing messages among nodes

3. Central computations in message passing: All we need is
sparse-dense (SpMM) and sampled dense-dense matrix
multiplications (SDDMM)
Ø Example: graph drawing, graph embedding, graph neural networks

4. Efficient computations: All we need is optimizing memory
utilization

5. Portable implementations: All we need is an auto-tuning
framework

Outline

7

Learning on graphs:

All we need is

graph embedding

1

8

q Consider a node classification task

q A binary classification problem.
q Can we apply a traditional machine learning

approach such as the logistic regression?
q In theory, yes! It may not work well in practice. Why

not?

An example of learning on a graph

0

1

2

3

4

5

Human

Human
Human/Bot?human

bot bot

9

Graphs represent very high-dimensional data

0 1 0 0 0 0

1 0 1 1 0 0

0 1 0 0 1 1

0 1 0 0 0 1

0 0 1 0 0 0

0 0 1 1 0 0

0

1

2

3

4

5

q What is the dimension
of this graph?

q Can be n (# of vertices)
according to Erdős, Harary, Tutte
§ One row represents the

connectivity features of a
vertex

§ What is the problem?
§ Curse of dimensionality
§ Need enormous training data
§ Standard machine learning

methods do not work well

0

1

2

3

4

5

Human

Human

Human/Bot?
human

bot bot

Erdős, Harary, and Tutte,, On the dimension of a graph,
Mathematika, 1965

10

q Represent nodes by low dimensional vectors

How to address: Node embedding

d << n

11

q Node embedding => dimensionality reductions

Node embedding

12

q Why useful:
– Low dimensional (meaningful and compact)
– Classical Machine Learning applies (e.g, K-means

clustering for node grouping)
– Network visualization (2D or 3D latent dimension)

Node embedding

Credit: Jure Leskovec

13

Goal of node embedding

14

q Just embedding lookup or deep neural networks

How to encode nodes: shallow/deep encoding

Shallow encoding

Deep encoding

15

The encoder-decoder approach

!"
!#

ENC(!")
ENC(!#)

$"

$#
DEC($", $#)

&'((= ∑(,-,,.)∈1×1 3(DEC($", $#) ,(4 !", !#)

Input Graph Embedding spaceEncoder
(shallow/deep)

Pairwise
Decoders
(e.g., dot products)

Proximity of nodes
in the original graph

Most Graph ML methods follow variants of this approach
Node2vec, GNNs, Graph Visualization……

16

Computational patterns in
graph embedding :

All we need is

Message passing

2

17

q Lesson from the image embedding: how do we embed
images in a latent space?

Node embedding goals

18

Embedding images to latent space

A filter

3x3 dense and regular filter
based on neighboring pixels

Graph analogy
(embedding this node)

19

Node embedding
based on information received from neighbors

1

8
7

2

6

4

5

3

Sparse and irregular
relative to images
Ø Different filter size at
different nodes
Ø Highly irregular

20

The setting
1. Message generation on an

edge (v,u):
Ø Determined by a message

generation function

2. Message aggregation on
vertices
Ø Determined by an aggregator

3. User defined:

Message passing is all you need

!"#
!$% ='()$,)%, +$%)

-$= .
%∈0($)

1)$,)%, !$%

2

3

'()$,)%, +$%)

vertex features

edge features

Updated vertex features

',1,⨁

21

1. Message generation: just
pass node features

2. Message aggregation: sum
messages (followed by non-
linear activations)

Example: Graph Convolutions

!"# = %"
= &(%")

)" = *
#∈,(")

!"#

= -
#∈,(")

. !"#

/

0

Kipf and Welling, Semi-supervised classification with graph convolutional networks, ICLR 2017

22

1. Message generation: dot
product and then sigmoid

2. Message aggregation:
elementwise multiply and
then sum

Example: Graph Embedding

!

"
#$% = '()$*)%)

= ,()$,)%)

.$ = /
%∈1($)

#$% ⊙)%

= 3
%∈1($)

4)%, #$%

Rahman, Sujon, Azad, Force2Vec: Parallel force-directed graph embedding, ICDM 2020

23

1. Message generation:
multilayer perceptron

2. Message aggregation: max
pooling

Similarly for graph drawing

Example: Complex GNNs

!

"
#
#

$%& = ()*(,%, ,&)
= /(0%, 0&)

1% = 23,&∈5(%)$%&

= 6
&∈5(%)

7 $%&

Thus, message passing models are widely used to implement almost all
graph ML algorithms

(e.g., in Deep Graph Library and PyTorch Geometric)

24

Central computations in message
passing:

All we need is

sparse-dense (SpMM) and sampled dense-dense
matrix multiplications (SDDMM)

3

25

q Message generations on edges adjacent to v1

Computational kernels in message generation

!" !#
!$!%

!&

!'

!(
)*+ = -(/*, /+, 1*+)

!3

!(

!" !#

!&

)*4)*5

26

Computational kernels in message generation

Y
"#"$ "%

&'

1
2
3
4

('

($

(# (%

)))

X

A

The vertex
v1 and its
neighbors

ü Message can be scalars, or vectors depending on the operation

ü We consider message generations on edges adjacent to v1

,'%

,'#

,'$

Using y for generality

27

Computational kernels in message generation

Y
"#"$ "%

&'

1
2
3
4

('

($

(# (%

)))

X

A

The vertex
v1 and its
neighbors

ü This operation is called SDDMM: Sampled Dense-Dense
Matrix Multiplication: , = .× 01⨀ 3

Dense multiplication sampled by the adjacency matrix A

4'%

4'#

4'$

Using y for generality

28

Computational kernels in message aggregation

!"

!#

!$!%

The vertex
v1 and its
neighbors

ü This operation is called SpMM: Sparse-dense matrix (or tensor)
multiplication: Z= '×)

1
2
3
4

*
+∈-(/0)

ϕ 3+, 5"+

Y
7$7# 7%

8 8 8

H

Z

= ;"

(c) SpMM

5"%

5"$5"#

29

FusedMM: SDDMM+SpMM

Y
"#"$ "%

&'

1
2
3
4

(((

X

A

+
,∈.(01)

ϕ &,, 5',

Y
"#"$ "%

6 6 6

Z

8' =

5'%

5'#

5'$ 5'%

5'#

No intermediate messages

Rahman, Sujon, Azad, FusedMM: A Unified SDDMM-SpMM Kernel for
Graph Embedding and Graph Neural Networks, IPDPS 2021 (to appear)

30

q Graph ML libraries such as Deep Graph Library (DGL)
and PyTorch Geometric (PyG) either implement
SpMM and SDDMM or rely on vendor-provided code
from Intel MKL and NVIDIA CuSPARSE

Message passing ML via Linear Algebra

Thus, SpMM , SDDMM and a few other sparse kernels are all we need to
fully implement message-passing based graph ML algorithms

31

Efficient computations :

All we need is

Optimizing memory utilization and load balancing

4

32

q Sparse operations are memory bound.
– How do we know?
– How to estimate the peak performance?

q Roofline model

Why does memory matter?

33

q Roofline model
q Operational intensity (also called arithmetic intensity) of

FusedMM (message generation + aggregation):
!

"!
$%$!

,

q where & is the average degree of the graph and d is the
embedding dimension

q For example, for &=16, d=128: the arithmetic intensity is
close to 1

q Hence, operations are almost always memory bound

Why does memory matter?

34

q Utilize memory bandwidth: Stream data
q Utilize temporal locality
– Load data to cache/register once and use many times

How to optimize memory?

35

q Partitioning (simple 1D) with balanced nonzero
distributions (other partitioning possible)

q Access X, A and Z once (in most cases)
– May access Y several times

Parallelization
(with an aim to minimize memory traffic)

Y"

X A Z

&

'

(

=

(
(

)*
)+),
)-

Part 1
Part 2

Part 3

Thread 1

Thread 2

Thread 3

36

Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

37

Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2
Vy3_1 Vy3_2

Input: Load necessary data to 4 registers
Output: Reserve two registers

and perform the entire computation

Vzu_1 Vzu_2

38

Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2

dot1 !()

Vy3_1Vy3_2

Edge-wise message generation
for the edge (u,3)

Vzu_1 Vzu_2

39

Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2

Vzu_1 Vzu_2

dot1

Vd1_1 Vd1_2

!()

Vy3_1Vy3_2

v=1

Vertex-wise message aggregation
(partial via edge (u,3))

40

Temporal locality via register blocking

Y

xu zu

y3 y5

au

Suppose register length=2

Vxu_1Vxu_2

Vzu_1 Vzu_2

dot1 dot2

Vd1_1 Vd2_2

Non temporal Memory write

Vd1_2 Vd2_1

v=2
!() !()

Vy3_1 Vy3_2 Vy5_1Vy5_2

v=1

Next for the edge (u,5)
All necessary vectors (x and z)
are still in registers
(full data reuse)

41

q Register blocking (within each thread)
– Works perfectly fine as long as all data (for one vertex) fits

in available registers
– Otherwise, we will reload registers from cache

Temporal locality via register blocking

42

0.2 0.4 0.6 0.8 1 1.2 1.4
Arithmetic Intensity (A.I.)

20

40

60

80

100

120

140

A
tta

in
ab

le
 G

FL
O

P/
s

Roofline model for Ogbprot., Youtube, and Orkut

Orkut

 Youtube

 Ogbprot.
Peak Bandwidth

MAX B/W: 100GB/s

Observed performance (Intel Skylake: 100GB/s bandwidth)
Example: Graph Embedding

Still does not achieve
the best performance

Runtime measured from
a Python interface

We speculate: Python to
C++ interface is slowing
things down

43

q Deep Graph Library (DGL)
– Uses C++ backend
– We consider DGL based on PyTorch
– DGLS also uses SDDMM and SpMM in the backend

Compare with Deep Graph Library

44

Graph embedding on Intel Skylake

Just
FusedMM

FusedMM
with register
Blocking and
Other tricks

Just SDDMM
+

SpMM

Graph Embedding Graph Drawing
(Force-directed)

Graph Convolutional
Network (GCN)

Much better
because of
high-dim messages

Ogbprot. Graph
Vertices 132K
Edges 39M

45

q What about other processors (ARM/AMD/IBM)?
q We developed a code generator for different Single

Instruction Multiple Data (SIMD) units
– Based on an autotuned linear algebra library called ATLAS

(Clint Whaley; Antoine Petitet, Jack J. Dongarra , 2001)

Performance portability

simd.h

X86(AVXZ,
AVX,SSE)

OpenPower
(VSX)

ARM64
(ASIMD)

GNU
VEC Code Generator

genkern genhead genmake

Extractor

Make filesHeader
files

Source
files

Source-to-source
compiler

Generated files

Machine independent macros

Machine specific SIMD codes

46

Harvard Flickr Amazon Youtube
10-3

10-2

10-1

100

K
er

ne
l T

im
e

(s
ec

.)
in

 lo
g

sc
al

e

(c) GCN: DGL vs. FusedMM

3.7 4.3
2.4

4.7

DGL
FusedMM

GCN on AMD and ARM processors

Harvard Flickr Amazon Youtube
10-3

10-2

10-1

100

101

K
er

ne
l T

im
e

(s
ec

.)
in

 lo
g

sc
al

e

(c) GCN: DGL vs. FusedMM

18.1

10.8

2.5

10.4

DGL
FusedMM

AMD ARM

Same algorithms with automatically tuned code for processors

47

Graph drawing on AMD and ARM processors

AMD ARM
Harvard Flickr Amazon Youtube

10-3

10-2

10-1

100

K
er

ne
l T

im
e

(s
ec

.)
in

 lo
g

sc
al

e

(a) FR: DGL vs. FusedMM

11.4
5.9

2.7
5.6

DGL
FusedMM

Harvard Flickr Amazon Youtube
10-3

10-2

10-1

100

K
er

ne
l T

im
e

(s
ec

.)
in

 lo
g

sc
al

e

(a) FR: DGL vs. FusedMM

19.2
13.6

4.1

11.0

DGL
FusedMM

Same algorithms with automatically tuned code for processors

48

q Graph embedding from python (end-to-end)
q Same algorithm => same accuracy

End-to-end Performance

Thus, optimized and portable sparse kernels (SpMM + SDDMM) speed
up various graph ML algorithms significantly

49

1. Learning on graphs: All we need is graph embedding
Ø Shallow embedding/deep embedding

2. Computational patterns in graph embedding: All we need is
passing messages among nodes

3. Central computations in message passing: All we need is
sparse-dense (SpMM) and sampled dense-dense matrix
multiplications (SDDMM)
Ø Example: graph drawing and graph embedding

4. Efficient computations: All we need is optimizing memory
utilization and load balancing

5. Portable implementations: All we need is an auto-tuning
framework

Summary

We developed FusedMM and
experimentally validated these

hypotheses
Rahman, Sujon, Azad (IPDPS 21)

50

q The evidence tells us that sparse linear algebra can
help Graph ML run faster on CPUs and GPUs

q Two questions that remain mostly unanswered
– How to exploit sparsity, e.g., sparse embedding?

• NVIDIA’s new GPUS (A100) will have limited features for sparse
operations

– How to distribute the computations, e.g., in
supercomputers?

What next?

51

q Main equation in forward propagation

Future direction: Distributed Graph Neural Network

nxn sparse matrix
(graph adjacency)
n: number of vertices

nxd dense matrix
(embedding matrix)
d: embedding
dimension

dxd dense matrix
(weight matrix)

!(#) = &('!(#())*(#))

We aim to make them sparse
without sacrificing accuracy

52

Parallelizing GNN (1D/2D/3D matrix multiplications)

The adjacency matrix: A !(#$%)

P1

P2

P3

P4

P1 P2

P3 P4

P1

P2

P3

P4

!(#)

P1

P2

P3

P4

x

x
x
x
x

=

'(#)

=

(replicated)

=
=
=

!(() = *(+!(($%)'(())

53

Thanks for your attention

Joint work with

Md. Khaledur Rahman and
Majedul Haque Sujon

Indiana University

