Computational Building Blocks for Machine
Learning on Graphs

Ariful Azad

Assistant Professor

Indiana University, Bloomington
azad@iu.edu

MIT Fast Code Seminar 01/25/2021

What 1s Graph and why do we care?

Graph: A representation of data .

1 |

Vertex (entity) Edge (relationship)
Biology: Proteins Interactions
Social media: Persons Friendship
Brain: Neurons Synapses

Example: Social networks

'\.. "‘- “.i Al s 0‘-
| n oV & | @ X
What to learn? o o S B R ®
* Information spread A . -_ n o < i\
¢ Recommend friend i OA.) ﬁ L -
* Advertisement - A l- ®

Facebook: > 2.2 billion active users

- J

Brain network

What to learn?

* Brain functions

* Diagnosis and
treatments

Brain network: 100B neurons
and 100T synapses

Common learning objectives on graphs

Q Classify nodes/subgraphs/graphs: protein
classification, topic classification

Q Predict links: Are x and y friends? Friend suggestions
on Facebook

a Identify communities: protein families
Q Visualize graphs

This talk discusses common computations needed in all
these tasks and how to map them to sparse linear algebra

1.

Outline

Learning on graphs: All we need is graph embedding
» Shallow embedding/deep embedding

Computational patterns in graph embedding: All we need is
passing messages among nodes

Central computations in message passing: All we need is
sparse-dense (SpMM) and sampled dense-dense matrix
multiplications (SDDMM)

» Example: graph drawing, graph embedding, graph neural networks

Efficient computations: All we need is optimizing memory
utilization

Portable implementations: All we need is an auto-tuning
framework

o

Learning on graphs:
All we need is

graph embedding

An example of learning on a graph

a Consider a node classification task

Human

bot Q 2 @ bot

human o @ e Human/Bot?

Human

a A binary classification problem.

Q Can we apply a traditional machine learning
approach such as the logistic regression?

Q In theory, yes! It may not work well in practice. Why
not?

Graphs represent very high-dimensional data

Human

O What is the dimension ot Q
of this graph?

Q Can be n (# of vertices)
according to Erdds, Harary, Tutte

@ bot

human
= One row represents the

(3)
&
Human/Bot?
connectivity features of a 4
0
1
0
0
I
1

vertex

= What is the problem?

= Curse of dimensionality

= Need enormous training data

= Standard machine learning
methods do not work well

©OO®OO®

5 TR A8 T el Tl G 968 i i L)

=0 O O e O

) O it e EECGY | C))

e S i s R T O S g TR O s R
s G L o i o e B B T 0 o R T)

Erdds, Harary, and Tutte,, On the dimension of a graph,
Mathematika, 1965 9

How to address: Node embedding

Q Represent nodes by low dimensional vectors

_node vec
u >
: —
- fru-R N Ny
]Rd
Feature representation,
embedding

d << n

10

Node embedding

Q Node embedding => dimensionality reductions

Latent Dimensions

)

e Anomaly Detection

e Aftribute Prediction
>e Clustering

e Link Prediction
L

(:5)

Input graph

Adjacency Matrix

=<

d << |V|

11

Node embedding

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together

elit
-
I .t e
Y A omina . *
A offfe O\
alr

Input graph 2D node embeddings

How to learn mapping function f?

12

Goal of node embedding

Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity (e.g., proximity)
in the network

.. T
................ ENC(u)

o o Zv
/\\u encode nodes .
\\ — /\
/ T s

ENC(v)

d-dimensional

Input network embedding space

13

How to encode nodes: shallow/deep encoding

Q Just embedding lookup or deep neural networks

embedding vector for
embedding a specific node
matrix e

Shallow encoding \ /
=

Dimension/size of
embeddings

one column per node

Graph Regularization, Graph
convolutions e.g., dropout convolutions

Activation
function

4 Deep encoding

Output: Node embeddings Also,
we can embed larger network
structures, subgraphs, graphs

14

The encoder-decoder approach

Proximity of nodes
in the original graph

Loss = Xy, vyevxy [(DEC(Z;, Zj) ,Sg (Vi' Uj))

e B 3
1
1
1
Vi i
1
___________ I
1

Vi > DEC(z;, Z))

Pairwise
Input Graph Encoder Embedding space Decoders
(shallow/deep) (e.g., dot products)

Most Graph ML methods follow variants of this approach

Node2vec, GNNs, Graph Visualization

@

Computational patterns in
graph embedding :

All we need is

Message passing

16

Node embedding goals

Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity (e.g., proximity)
in the network

.. s
................. ENC(u)
L "
/ \\’U, enCOde nodes ¢
DA
e . T
ENC(v)

d-dimensional

Input network embedding space

Q Lesson from the image embedding: how do we embed
images in a latent space?

17

Embedding images to latent space

/

VA S A S A A A A A
S 7 N7 7 7/
7 Y77 7
al

Inputs

e

7
A A AN AR A

A filter

g
e

7 7 0 7777 7 7

Outputs

7

e

A —_

Graph analogy
(embedding this node)

3x3 dense and regular filter
based on neighboring pixels

18

Node embedding
based on information received from neighbors

Sparse and irregular
relative to images

» Different filter size at
different nodes

» Highly irregular

Transform information at the neighbors and combine it:

" Transform “messages” h; from neighbors: W; h;
* Add them up:),; W; h;

19

Message passing is all you need

The setting e
. * e
1. Message generation on an et R
edge (v,u): hy, v /

» Determined by a message u1 Moy =9 (X X A
generation function 7R
¢(Xu: Xv; auv)

Zy— 69 P (Xyy, Xy, hy)

2. Message aggregation on Ve
vertices \
» Determined by an aggregator Updated vertex features

3. User defined: ¥, ¢, D

20

Example: Graph Convolutions

1. Message generation: just
pass node features

2. Message aggregation: sum
messages (followed by non-
linear activations)

Kipf and Welling, Semi-supervised classification with graph convolutional networks, ICLR 2017

21

Example: Graph Embedding

1. Message generation: dot
product and then sigmoid

h,,, = O'(XtTth)

2. Message aggregation:
= P (X Xp)

elementwise multiply and
then sum

Z, = Z h,,, O x,
vEN (u)

- D ¢t b

veEN(u)

Rahman, Sujon, Azad, Force2Vec: Parallel force-directed graph embedding, ICDM 2020

22

Example: Complex GNNs

Message generation: EKI%

multilayer perceptron Y

. h,, = MLP(x,,X;)
Message aggregatlon: Max y l

pooling ~ V)
7N
Z, = max h,,
VEN(u)
- 69 ¢(h,,,)
Similarly for graph drawing vEN(w)

Thus, message passing models are widely used to implement almost all

graph ML algorithms

(e.g., in Deep Graph Library and PyTorch Geometric)

O

Central computations in message
passing:

All we need is

sparse-dense (SpMM) and sampled dense-dense
matrix multiplications (SDDMM)

24

Computational kernels in message generation

0O Message generations on edges adjacent to v,

25

Computational kernels in message generation

Using y for generality

The vertex Y2 Y4 Ys
v, and its Y hig
neighbors
X1
& A,
Uy
.

1
V1 X 2 h12

3

4
v4- v8

A

v' Message can be scalars, or vectors depending on the operation

v" We consider message generations on edges adjacent to v,

26

Computational kernels in message generation

Using y for generality

The vertex Y2 Ya Ys
v, and its Y hqg
neighbors
X1
& .
(%
=

1
V1 X 2 h12

3

4
v4- v8

A

v’ This operation is called SDDMM: Sampled Dense-Dense
Matrix Multiplication: H = XX YT ©® A4
Dense multiplication sampled by the adjacency matrix A

27

Computational kernels in message aggregation

The vertex Y2 Va4 Ys (c) SpMM
v;and its Y
neighbors
v d) ¢ ¢ @ (I)(Xui hlu) == Z1
2 hy, h,, p UEN (V1)
1 hig
(2 5
3 Z
v4- v8 4
H

v' This operation is called SpMM: Sparse-dense matrix (or tensor)
multiplication: Z= HXY

28

FusedMM: SDDMM+SpMM

Y2 A Vs \g) A2 Vs

. @/ hyy

B W N R

A Z, = @ G(xXy, hyy)

U€eN (vq)

No intermediate messages

Rahman, Sujon, Azad, FusedMM: A Unified SDDMM-SpMM Kernel for
Graph Embedding and Graph Neural Networks, IPDPS 2021 (to appear)
29

Message passing ML via Linear Algebra

Q Graph ML libraries such as Deep Graph Library (DGL)
and PyTorch Geometric (PyG) either implement
SpMM and SDDMM or rely on vendor-provided code
from Intel MKL and NVIDIA CuSPARSE

Thus, SpMM , SDDMM and a few other sparse kernels are all we need to
fully implement message-passing based graph ML algorithms

@

Efficient computations :

All we need is

Optimizing memory utilization and load balancing

31

Why does memory matter?

Q Sparse operations are memory bound.

— How do we know?

— How to estimate the peak performance?

d Roofline model

2048

—
o
]
=S

Attainable flop/s (Gflop/s)

—
D

(]
—
Do

0o
(%))
(o))

)]
s

(%]
Do

+SFU [smgle-premsmn pe:ak
+FMA

no SFU, no FMA

L A:

) o)

: o

H .

: ©;

= 3’5

8: o

= E:

S =X

S >

o: =

0- o-

: Qo o
>: z: z:
= ®. 7R
Q_l M (Ul mu
CDE (DE L L :

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128 256

Operational intensity (flop/byte)

32

Why does memory matter?

O Roofline model

Q Operational intensity (also called arithmetic intensity) of
FusedMM (message generation + aggregation):

)
35 ’
—+2+8

Q where 6 is the average degree of the graph and d is the
embedding dimension

Q For example, for 6=16, d=128: the arithmetic intensity is
closeto 1

Q Hence, operations are almost always memory bound

33

How to optimize memory?

Q Utilize memory bandwidth: Stream data

Q Utilize temporal locality
— Load data to cache/register once and use many times

34

Parallelization
(with an aim to minimize memory traffic)

Q Partitioning (simple 1D) with balanced nonzero
distributions (other partitioning possible)

Q Access X, A and Z once (in most cases)

— May access Y several times

n >
YT Id
_a _a

IR T T O[] Fori " Thread 1
v

m| [v =[] P2 Thread2
Vs | Part3 Thread 3

X A Z

35

Temporal locality via register blocking

Y3 Ys
Nan
Xu] I Z,
L[] N B [T T]

Suppose register length=2

36

Temporal locality via register blocking

VXu_leu_z
Y3 ¥s Vys_1 Vys -|
i
Sieslum m mmEfC
all
Suppose register length=2
Input: Load necessary data to 4 registers --
Output: Reserve two registers Vz. 1 Vi,

and perform the entire computation

37

Temporal locality via register blocking

SRRRRCLEELILLLLLY .. VXu_l VXu_2
Y3 Y¥s ’
Nan
Au | . f
(1] N B [T T

Suppose register length=2

Edge-wise message generation Vz, 1 Vz,,
for the edge (u,3)

38

Temporal locality via register blocking

SRRRRCLEELILLLLLY .. VXu_l VXu_2
Y3 Ys ’
NEm &
i I] 5
[T] N N HEEN}
a, :

Suppose register length=2

Vertex-wise message aggregation Vz, 1 Vz,,
(partial via edge (u,3))

39

Temporal locality via register blocking

VXu_l VXu_2 ---------------- -

Y3 Ys ’ < Vys Vys
Y . 0'() d0t2 :
v=2
S eslum m Rl " " :
a, :Vd, | Vd,
Suppose register length=2 -l-
Next for the edge (u,5) Vz, t V2, ,

All necessary vectors (x and z)
are still in registers
(full data reuse)

Non temporal Memory write

40

Temporal locality via register blocking

O Register blocking (within each thread)

— Works perfectly fine as long as all data (for one vertex) fits
in available registers

— Otherwise, we will reload registers from cache

41

Observed performance (Intel Skylake: 100GB/s bandwidth)
Example: Graph Embedding

Roofline model for Ogbprot., Youtube, and Orkut
140 ¢

[
(\®)
-

Still does not achieve

MAX B/W: 100GB/s the best performance

[
-
-

Runtime measured from
a Python interface

N
-

% Ogbprot.

Attainable GFLOP/s
o0
S

40 r We speculate: Python to
® < Youtube C++ interface is slowing
20 - :
things down

0.2 04 0.6 0.8 1 1.2 14
Arithmetic Intensity (A.L.)

42

Compare with Deep Graph Library

Q Deep Graph Library (DGL)

— Uses C++ backend
— We consider DGL based on PyTorch
— DGLS also uses SDDMM and SpMM in the backend

43

Graph embedding on Intel Skylake

Graph Drawing

Graph Embeddin
P 8 (Force-directed)

§3 § 9 Much better
5, 5, 6, because of
g g high-dim messages
= [
’ DGL FusedMM_noopt FusedMM_opt ’ DGL FusedMM_noopt FusedMM_opt
Just SDDMM Just FusedMM Graph Convolutional
+ FusedMM with register 3 Network (GCN)
SpMM Blocking and
Other tricks

Ogbprot. Graph
Vertices 132K
Edges 39M

Time per epoch (seconds)

DGL FusedMM_noopt ~ FusedMM_opt 44

Performance portability

0 What about other processors (ARM/AMD/IBM)?

Q We developed a code generator for different Single

Instruction Multiple Data (SIMD) units

— Based on an autotuned linear algebra library called ATLAS

(Clint Whaley; Antoine Petitet, Jack J. Dongarra, 2001)

/ Machine specific SIMD codes \
A —~ [genkern I genheadI genmake]

X86(AVXZ OpenPower . ARM64 @ GNU
AVX,SSE) (VSX) (ASIMD) = VEC

Code Generator
simd.h] 1

Source-to-source
T Extractor :
Machine independent macros compiler

Source Header

K Generated files = files files Make ﬁles/

45

GCN on AMD and ARM processors

Same algorithms with automatically tuned code for processors

U
O»—

B DGL
Il FusedMM

B DGL
7- FusedMM

@)
()

[E—
(@)

Kernel Time (sec.) in log scale

Kernel Time (sec.) in log scale
=

Harvard Flickr Amazon Youtube 107

Harvard Flickr Amazon Youtube

AMD ARM

46

Graph drawing on AM|

D and ARM processors

Same algorithms with automatically tuned code for processors

B DGL
7- FusedMM

5.9x
11.4x

Harvard Flickr Amazon Youtube

AMD

o

—_
S

f—
@)
[

—_
e}
\S]

Kernel Time (sec.) in log scale

(O]

—_
)

Bl DGL
7- FusedMM

Kernel Time (sec.) in log scale

Harvard Flickrr Amazon Youtube

ARM

47

End-to-end Performance

Q Graph embedding from python (end-to-end)
Q Same algorithm => same accuracy

Graphs Method Total Time (Sec.) Speedup

PyTorch 0.342 48.9 %

Cora DGL 0.177 25.3%
FusedMM 0.007 1.0x

PyTorch 2.590 45.4 %

Pubmed DGL 1.415 28.3%
FusedMM 0.057 1.0x

Thus, optimized and portable sparse kernels (SpMM + SDDMM) speed

up various graph ML algorithms significantly

Summary

1. Learning on graphs: All we need is graph embedding
» Shallow embedding/deep embedding

2. Computational patterns in graph embedding: All we need is
passing messages among nodes

We developed FusedMM and

3. Centra eed is
;I:slfti: experimentally validated these)atrix
> Exam hypotheses

Rahman, Sujon, Azad (IPDPS 21)

4. Efficientcomputations: Anrwe neea1s optimizing memory
utilization and load balancing

5. Portable implementations: All we need is an auto-tuning
framework

49

What next?

Q The evidence tells us that sparse linear algebra can
help Graph ML run faster on CPUs and GPUs

Q Two questions that remain mostly unanswered

— How to exploit sparsity, e.g., sparse embedding?

* NVIDIA’s new GPUS (A100) will have limited features for sparse
operations

— How to distribute the computations, e.g., in
supercomputers?

o0

Future direction: Distributed Graph Neural Network

Q Main equation in forward propagation

HD = O-(AH(I—I)w(l))

NXn sparse matrix nXd dense matN

(graph adjacency) (embeddmg matrix) dxd dense matrix
n: number of vertices d: embedding (weight matrix)
dimension

We aim to make them sparse
without sacrificing accuracy

o1

Parallelizing GNN (1D/2D/3D matrix multiplications)

Py P X =
] TR T
X —_
Pz Pz -
P3 P3] b ! X p—] b !
[e
P, P, FT= X — - 1
gd-1 w® HO
The adjacency matrix: A (replicated)

HO = g(AHI-DWD)

02

Joint work with

Md. Khaledur Rahman and
Majedul Haque Sujon

Indiana University

Thanks for your attention

23

