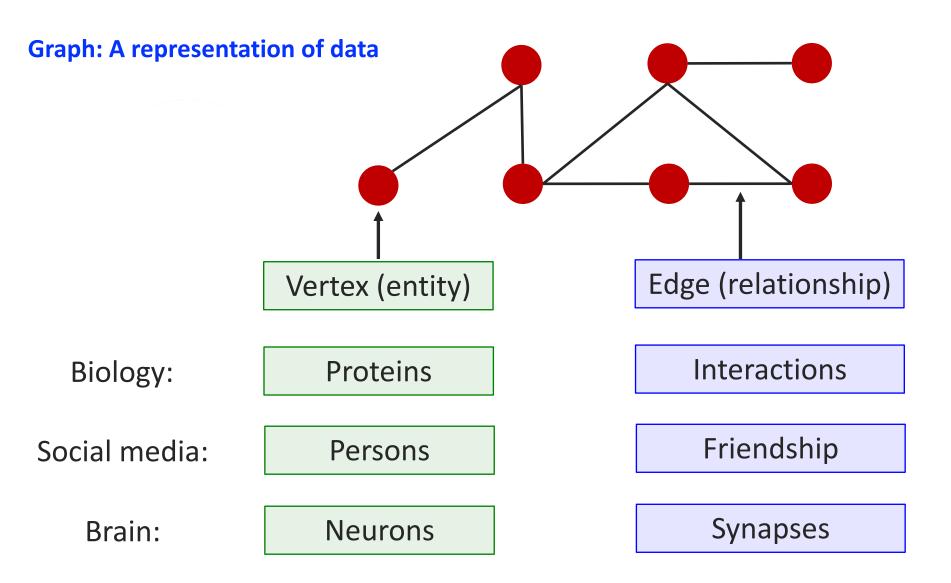


Computational Building Blocks for Machine Learning on Graphs

Ariful Azad Assistant Professor Indiana University, Bloomington azad@iu.edu

MIT Fast Code Seminar 01/25/2021

What is Graph and why do we care?



Example: Social networks

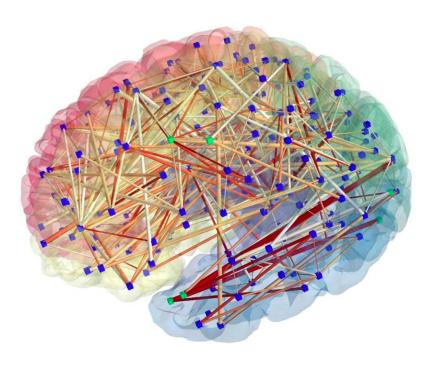
What to learn?

- Information spread
- Recommend friend
- Advertisement

Brain network

What to learn?

- Brain functions
- Diagnosis and treatments



Brain network: 100B neurons and 100T synapses

- Classify nodes/subgraphs/graphs: protein classification, topic classification
- Predict links: Are x and y friends? Friend suggestions on Facebook
- □ Identify communities: protein families
- Visualize graphs

This talk discusses common computations needed in all these tasks and how to map them to sparse linear algebra

Outline

- Learning on graphs: All we need is graph embedding
 ➤ Shallow embedding/deep embedding
- 2. Computational patterns in graph embedding: All we need is passing messages among nodes
- 3. Central computations in message passing: All we need is sparse-dense (SpMM) and sampled dense-dense matrix multiplications (SDDMM)
 - > Example: graph drawing, graph embedding, graph neural networks
- Efficient computations: All we need is optimizing memory utilization
- Portable implementations: All we need is an auto-tuning framework

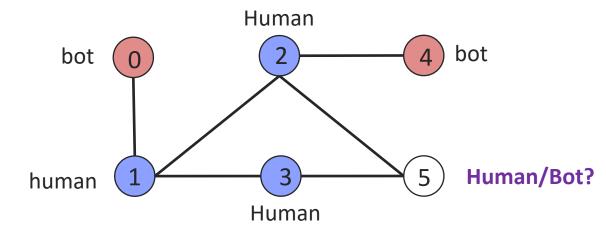
Learning on graphs:

All we need is

graph embedding

An example of learning on a graph

Consider a node classification task



- □ A binary classification problem.
- Can we apply a traditional machine learning approach such as the logistic regression?
- In theory, yes! It may not work well in practice. Why not?

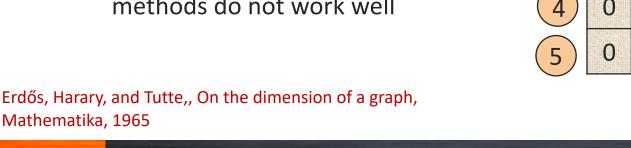
Graphs represent very high-dimensional data

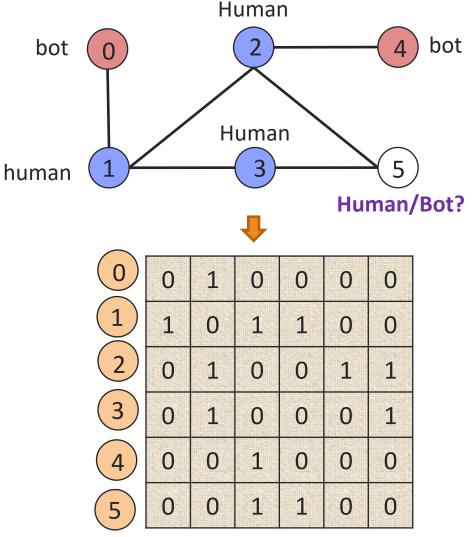
What is the dimension of this graph?

- Can be n (# of vertices) according to Erdős, Harary, Tutte
 - One row represents the connectivity features of a vertex

What is the problem?

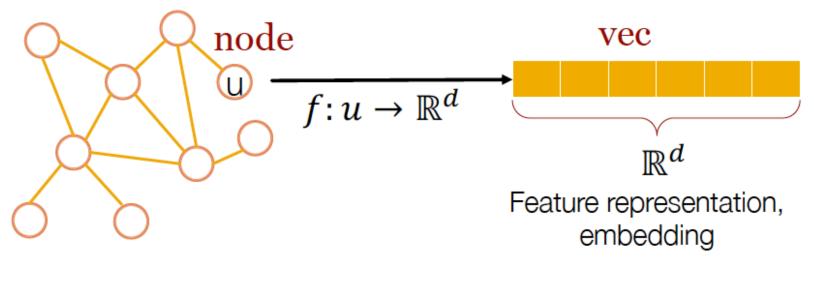
- Curse of dimensionality
- Need enormous training data
- Standard machine learning methods do not work well





How to address: Node embedding

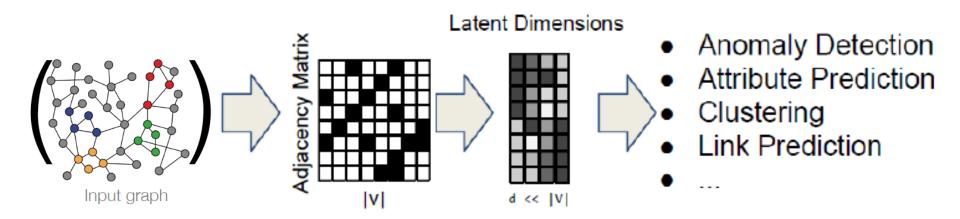
□ Represent nodes by low dimensional vectors



d << n

Node embedding

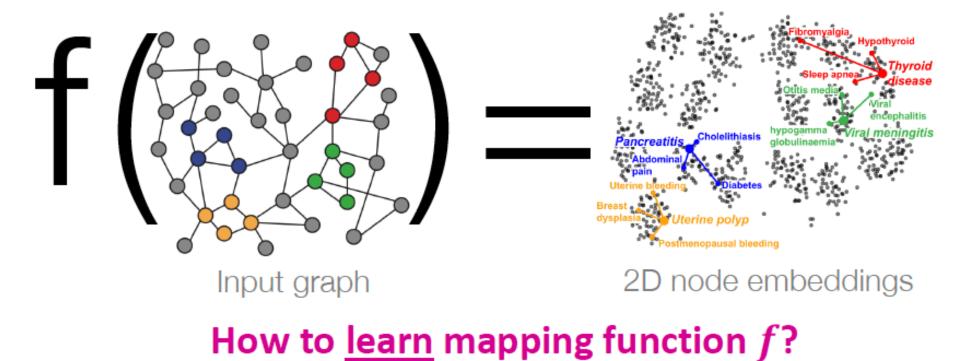
□ Node embedding => dimensionality reductions



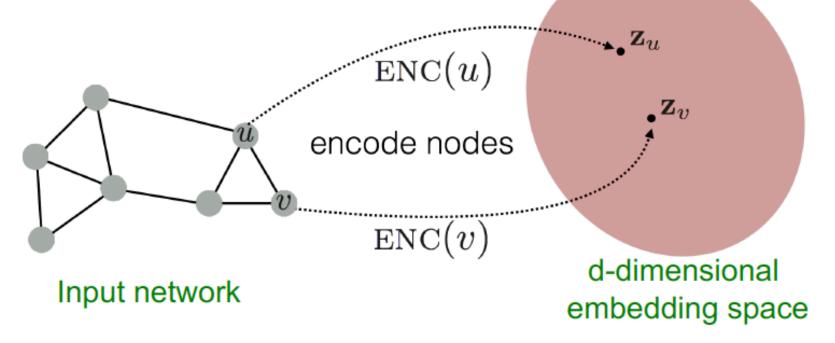
Node embedding

Credit: Jure Leskovec

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

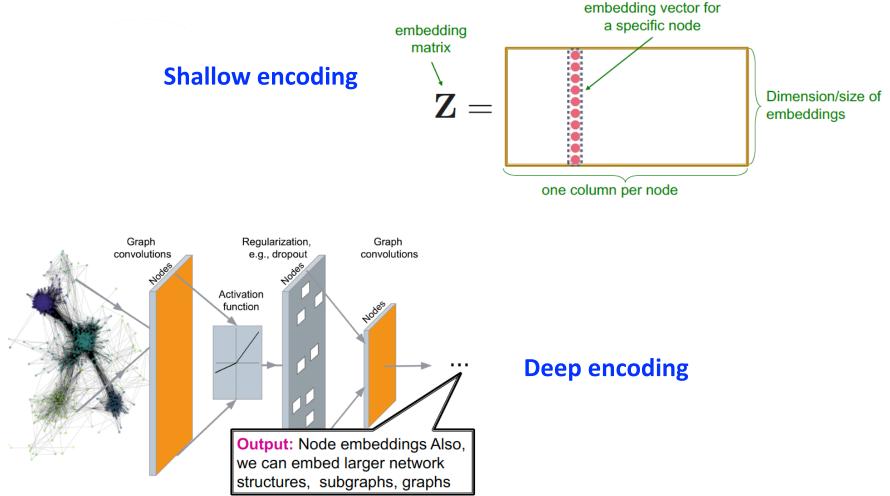


 Goal: Map nodes so that similarity in the embedding space (e.g., dot product) approximates similarity (e.g., proximity) in the network

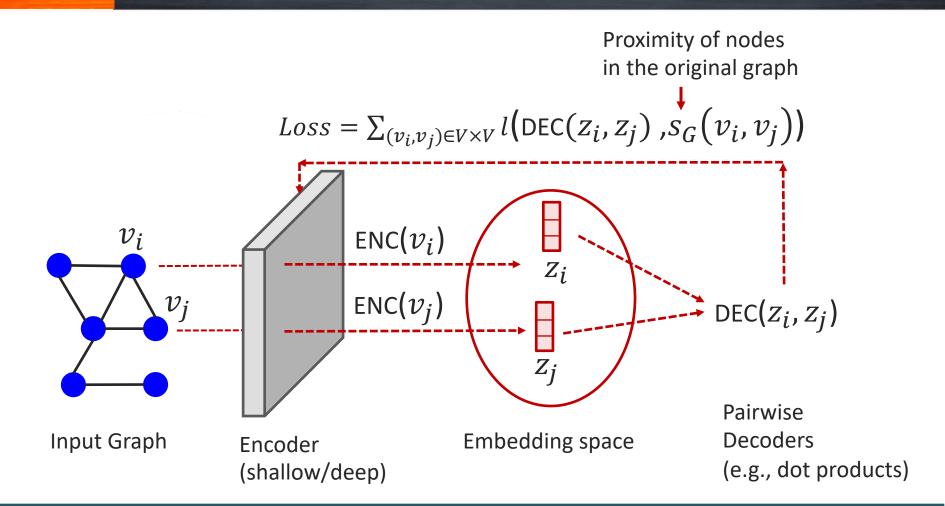


How to encode nodes: shallow/deep encoding

□ Just embedding lookup or deep neural networks



The encoder-decoder approach



Most Graph ML methods follow variants of this approach Node2vec, GNNs, Graph Visualization.....

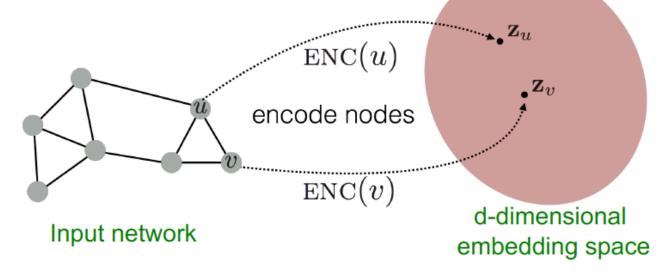
Computational patterns in graph embedding :

All we need is

Message passing

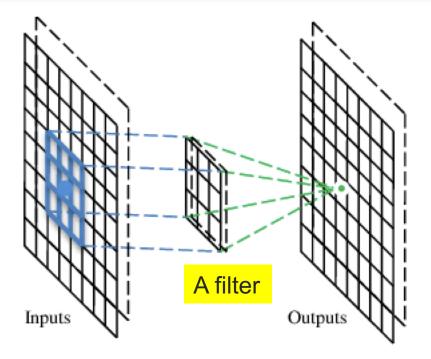
Node embedding goals

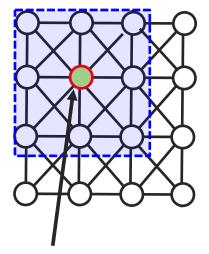
 Goal: Map nodes so that similarity in the embedding space (e.g., dot product) approximates similarity (e.g., proximity) in the network



Lesson from the image embedding: how do we embed images in a latent space?

Embedding images to latent space

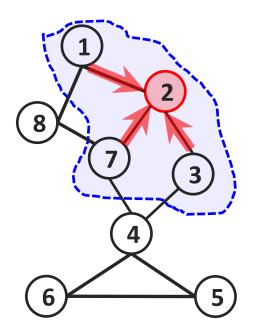




Graph analogy (embedding this node)

3x3 **dense** and **regular filter** based on neighboring pixels

Node embedding based on information received from neighbors



Sparse and irregular
relative to images
➢ Different filter size at
different nodes
➢ Highly irregular

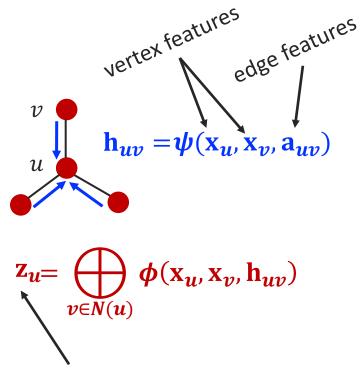
Transform information at the neighbors and combine it:

- Transform "messages" h_i from neighbors: W_i h_i
- Add them up: $\sum_i W_i h_i$

Message passing is all you need

The setting

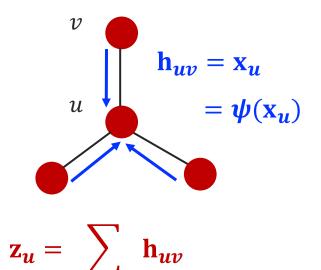
- Message generation on an edge (v,u): h_{uv}
 - Determined by a message generation function
 ψ(x_u, x_v, a_{uv})
- 2. Message aggregation on vertices
 - Determined by an aggregator
- 3. User defined: ψ , ϕ , \oplus



Updated vertex features

Example: Graph Convolutions

- Message generation: just pass node features
- Message aggregation: sum messages (followed by nonlinear activations)

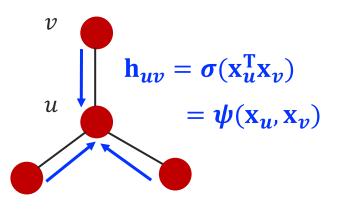


 $\phi(\mathbf{h}_{uv})$

Kipf and Welling, Semi-supervised classification with graph convolutional networks, ICLR 2017

Example: Graph Embedding

- Message generation: dot product and then sigmoid
- Message aggregation: elementwise multiply and then sum

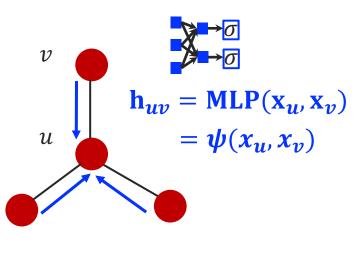


$$\mathbf{z}_{u} = \sum_{v \in N(u)} \mathbf{h}_{uv} \odot \mathbf{x}_{v}$$
$$= \bigoplus_{v \in N(u)} \boldsymbol{\phi}(\mathbf{x}_{v}, \mathbf{h}_{uv})$$

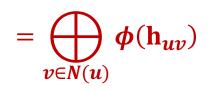
Rahman, Sujon, Azad, Force2Vec: Parallel force-directed graph embedding, ICDM 2020

Example: Complex GNNs

- 1. Message generation: multilayer perceptron
- 2. Message aggregation: max pooling



 $\mathbf{z}_u = \max_{v \in N(u)} \mathbf{h}_{uv}$



Similarly for graph drawing

Thus, message passing models are widely used to implement almost all graph ML algorithms (e.g., in Deep Graph Library and PyTorch Geometric)

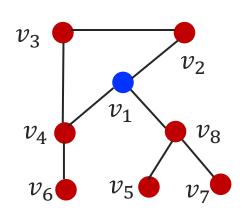
Central computations in message passing:

All we need is

sparse-dense (SpMM) and sampled dense-dense matrix multiplications (SDDMM)

Computational kernels in message generation

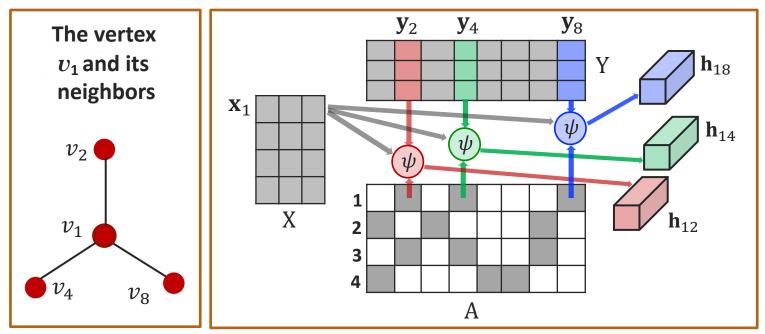
\Box Message generations on edges adjacent to v_1



$$v_2$$

 $h_{12} = \psi(x_1, x_2, a_{12})$
 h_{14}
 v_4
 v_8

Computational kernels in message generation

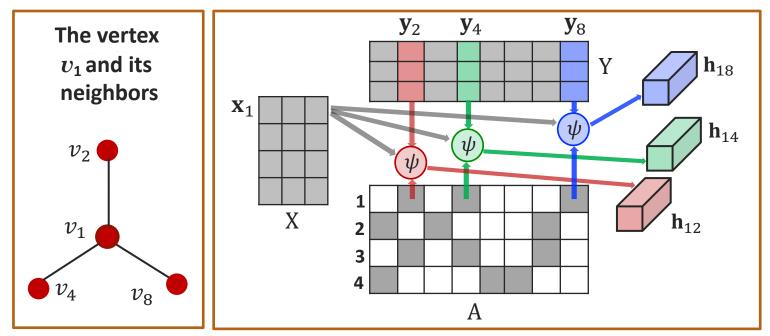


Using y for generality

✓ Message can be scalars, or vectors depending on the operation

 \checkmark We consider message generations on edges adjacent to v₁

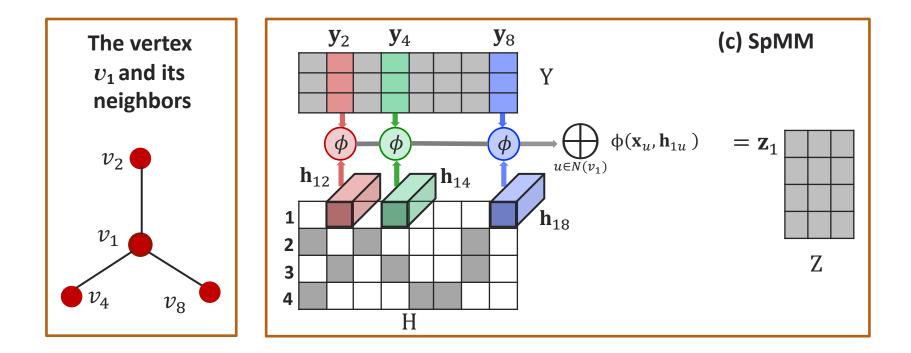
Computational kernels in message generation



Using y for generality

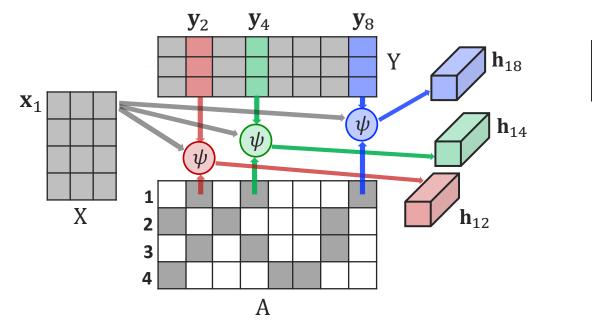
 ✓ This operation is called SDDMM: Sampled Dense-Dense Matrix Multiplication: H = X × Y^T ⊙ A
 Dense multiplication sampled by the adjacency matrix A

Computational kernels in message aggregation



✓ This operation is called **SpMM: Sparse-dense matrix (or tensor)** multiplication: $Z = H \times Y$

FusedMM: SDDMM+SpMM



$\mathbf{z}_{1} = \bigoplus_{u \in N(v_{1})} \phi(\mathbf{x}_{u}, \mathbf{h}_{1u})$

y8

Φ

h₁₄

Y

y₄

y₂

No intermediate messages

Rahman, Sujon, Azad, FusedMM: A Unified SDDMM-SpMM Kernel for Graph Embedding and Graph Neural Networks, IPDPS 2021 (to appear)

Message passing ML via Linear Algebra

 Graph ML libraries such as Deep Graph Library (DGL) and PyTorch Geometric (PyG) either implement
 SpMM and SDDMM or rely on vendor-provided code from Intel MKL and NVIDIA CuSPARSE

Thus, SpMM, SDDMM and a few other sparse kernels are all we need to fully implement message-passing based graph ML algorithms

Efficient computations :

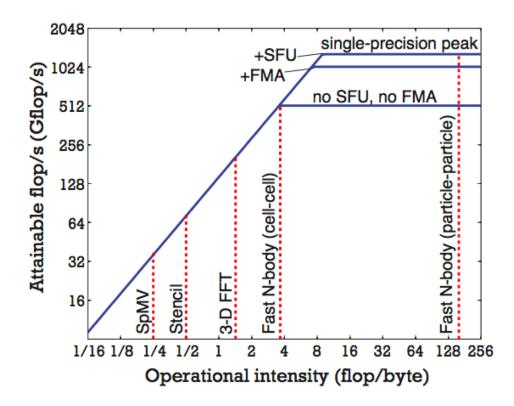
All we need is

Optimizing memory utilization and load balancing

□ Sparse operations are memory bound.

- How do we know?
- How to estimate the peak performance?

□ Roofline model



Roofline model

Operational intensity (also called arithmetic intensity) of FusedMM (message generation + aggregation):

$$\frac{\delta}{\frac{3\delta}{d}+2+\delta}$$
,

 $\hfill\square$ where δ is the average degree of the graph and d is the embedding dimension

- □ For example, for δ =16, d=128: the arithmetic intensity is close to 1
- □ Hence, operations are almost always **memory bound**

How to optimize memory?

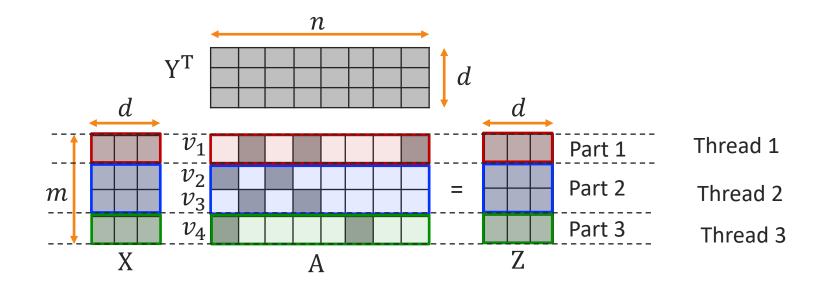
Utilize memory bandwidth: Stream data

Utilize temporal locality

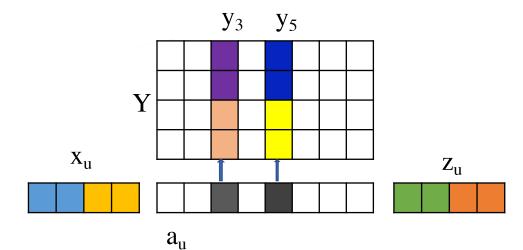
Load data to cache/register once and use many times

Parallelization (with an aim to minimize memory traffic)

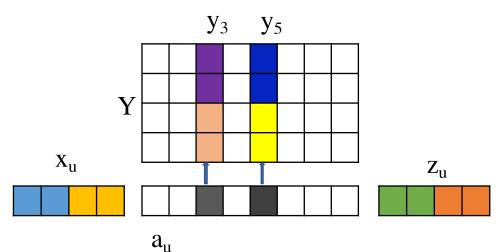
- Partitioning (simple 1D) with balanced nonzero distributions (other partitioning possible)
- □ Access X, A and Z once (in most cases)
 - May access Y several times

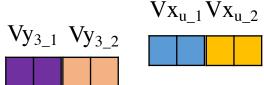


Temporal locality via register blocking



Suppose register length=2

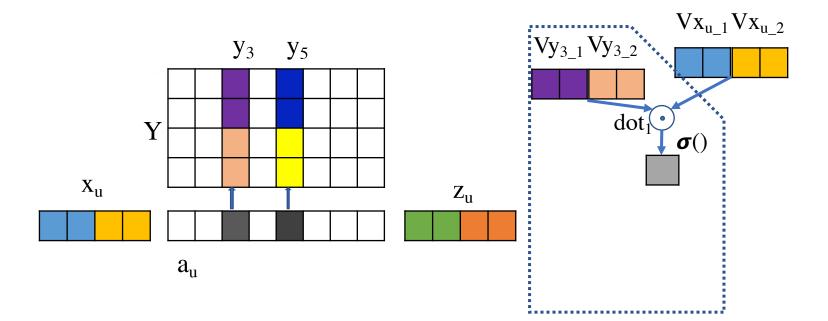




Suppose register length=2

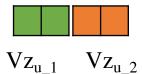
Input: Load necessary data to 4 registers Output: Reserve two registers

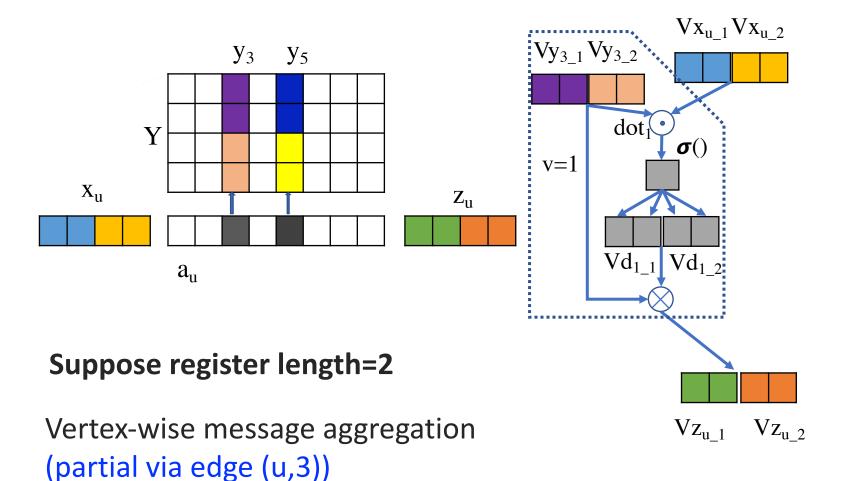
and perform the entire computation

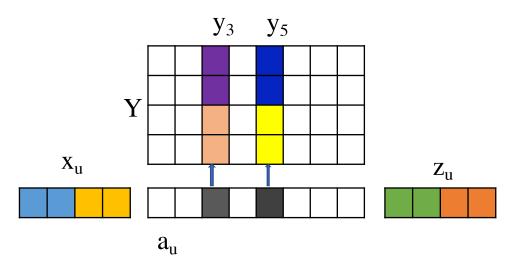


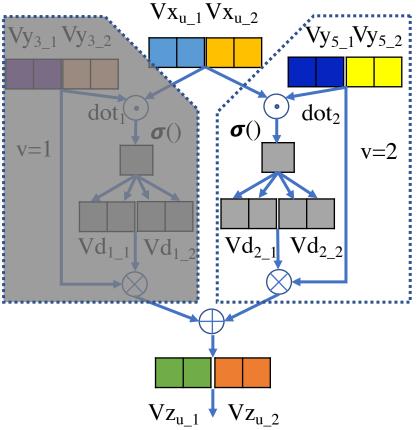
Suppose register length=2

Edge-wise message generation for the edge (u,3)









Non temporal Memory write

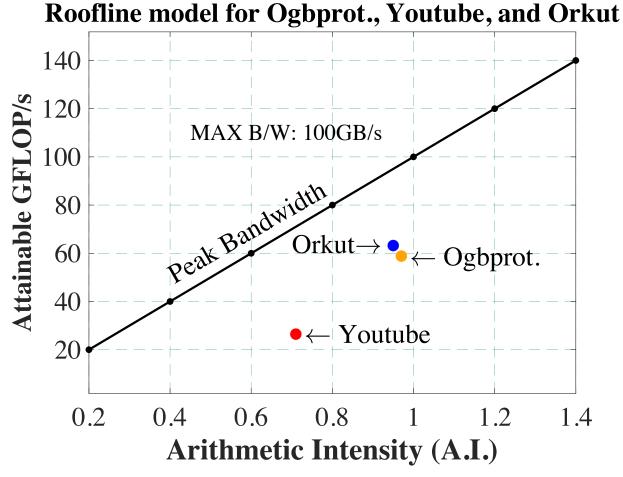
Suppose register length=2

Next for the edge (u,5) All necessary vectors (x and z) are still in registers (full data reuse)

□ Register blocking (within each thread)

- Works perfectly fine as long as all data (for one vertex) fits in available registers
- Otherwise, we will reload registers from cache

Observed performance (Intel Skylake: 100GB/s bandwidth) Example: Graph Embedding



Still does not achieve the best performance

Runtime measured from a Python interface

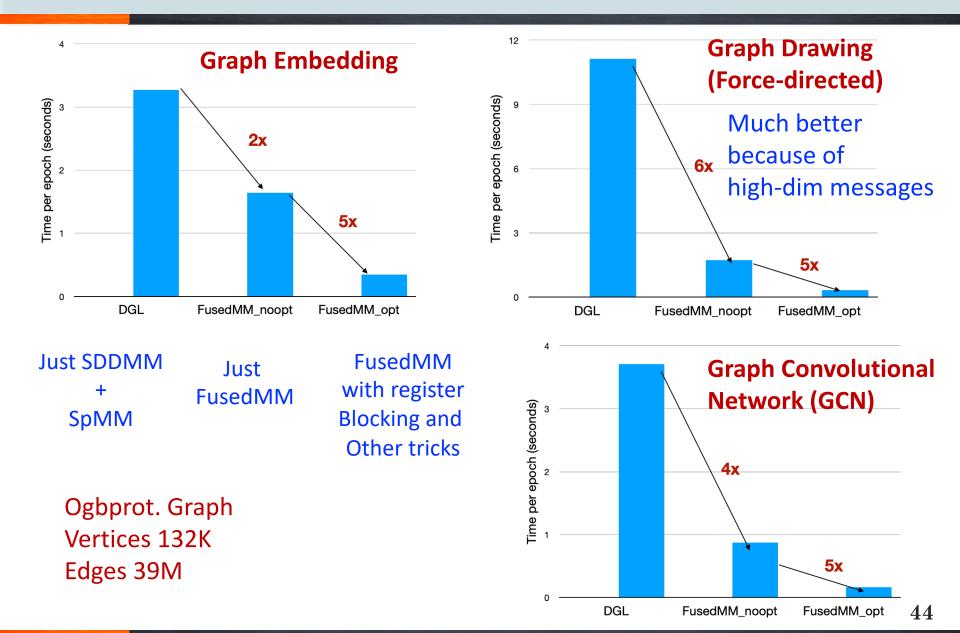
We speculate: Python to C++ interface is slowing things down

Compare with Deep Graph Library

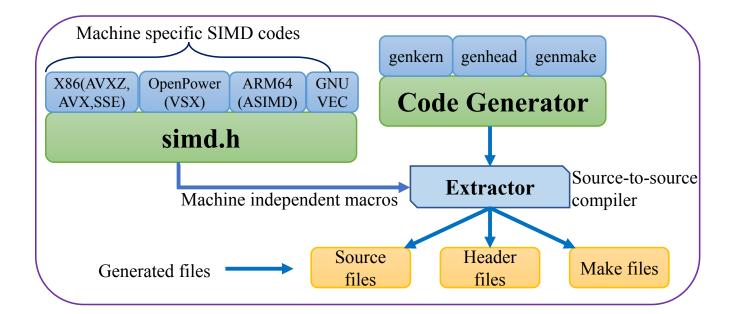
Deep Graph Library (DGL)

- Uses C++ backend
- We consider DGL based on PyTorch
- DGLS also uses SDDMM and SpMM in the backend

Graph embedding on Intel Skylake

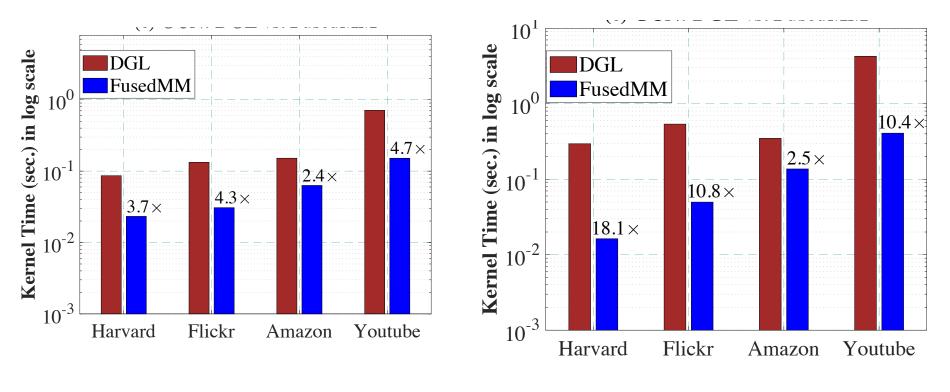


- □ What about other processors (ARM/AMD/IBM)?
- □ We developed a code generator for different Single Instruction Multiple Data (SIMD) units
 - Based on an autotuned linear algebra library called ATLAS (Clint Whaley; Antoine Petitet, Jack J. Dongarra , 2001)



GCN on AMD and ARM processors

Same algorithms with automatically tuned code for processors

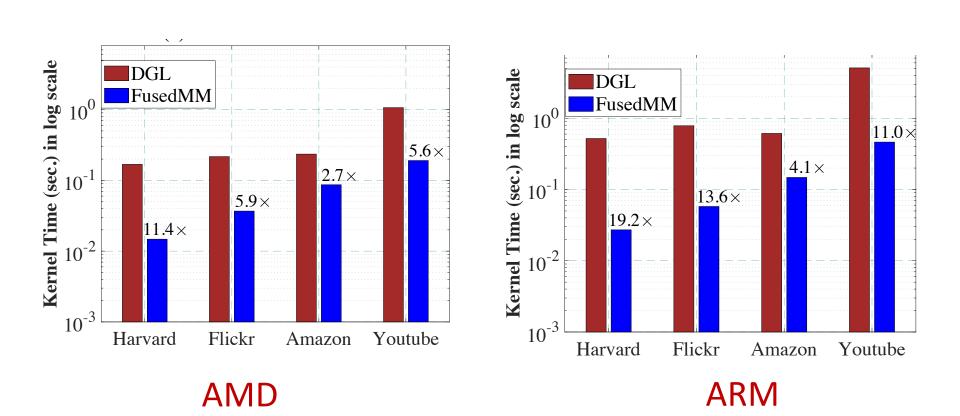


AMD

ARM

Graph drawing on AMD and ARM processors

Same algorithms with automatically tuned code for processors



47

Graph embedding from python (end-to-end)
 Same algorithm => same accuracy

Graphs	Method	Total Time (Sec.)	Speedup
Cora	PyTorch	0.342	$48.9 \times$
	DGL	0.177	$25.3 \times$
	FusedMM	0.007	$1.0 \times$
Pubmed	PyTorch	2.590	45.4×
	DGL	1.415	$28.3 \times$
	FusedMM	0.057	$1.0 \times$

Thus, optimized and portable sparse kernels (SpMM + SDDMM) speed up various graph ML algorithms significantly

Summary

- Learning on graphs: All we need is graph embedding
 ➤ Shallow embedding/deep embedding
- 2. Computational patterns in graph embedding: All we need is passing messages among nodes

Rahman, Sujon, Azad (IPDPS 21)

- 4. Efficient computations: All we need is optimizing memory utilization and load balancing
- Portable implementations: All we need is an auto-tuning framework

What next?

The evidence tells us that sparse linear algebra can help Graph ML run faster on CPUs and GPUs

□ Two questions that remain mostly unanswered

- How to exploit **sparsity**, e.g., sparse embedding?
 - NVIDIA's new GPUS (A100) will have limited features for sparse operations
- How to distribute the computations, e.g., in supercomputers?

□ Main equation in forward propagation

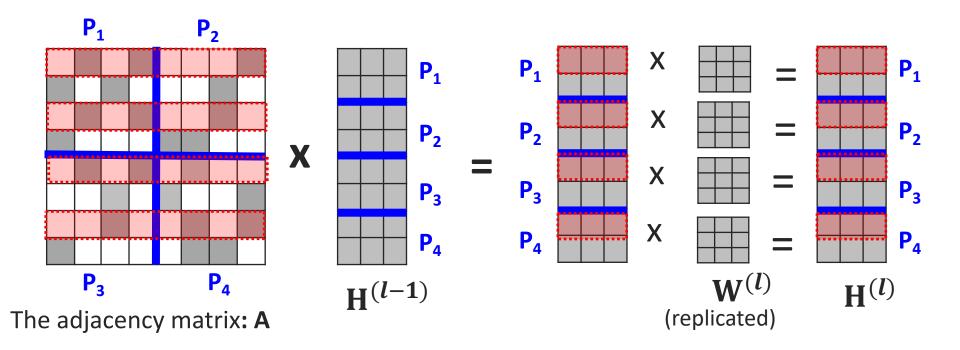
nxn sparse matrix
(graph adjacency)
n: number of vertices

nxd dense matrix
(embedding matrix)
d: embedding
dimension

dxd dense matrix (weight matrix)

We aim to make them sparse without sacrificing accuracy

Parallelizing GNN (1D/2D/3D matrix multiplications)



$$\mathbf{H}^{(\mathbf{l})} = \boldsymbol{\sigma}(\mathbf{A}\mathbf{H}^{(\mathbf{l}-1)}\mathbf{W}^{(\mathbf{l})})$$

Joint work with

Md. Khaledur Rahman and Majedul Haque Sujon

Indiana University

Thanks for your attention